
ON THE MULTIDIMENSIONAL HAAR TRANSFORM

CARMINE-EMANUELE CELLA

Abstract. This short technical note summarizes how to compute the multi-

dimensional Haar transform both in normal and separable way.

1. 1D filters

The Haar functions are the simplest possible wavelets. The 1D mother wavelet
function ψ(t) can be described as:

(1) ψ1(t) =


1, for 0 ≤ t < 1

2

−1, for 1
2 ≤ t < 1

0, otherwise.

The corresponding scaling function φ(t) is described as:

(2) φ1(t) =

{
1, for 0 ≤ t < 1

0, otherwise.

2. 2D filters and 3D filters

2D Haar functions can be constructed using tensor products as follows:

(3) 2D =


ψ1
2 = ψ1 ⊗ φ1

ψ2
2 = φ1 ⊗ ψ1

ψ3
2 = ψ1 ⊗ ψ1

φ2 = φ1 ⊗ φ1.

In the same way, 3D filters are:

(4) 3D =



ψ1
3 = ψ1

2 ⊗ ψ1

ψ2
3 = φ22 ⊗ ψ1

ψ3
3 = ψ3

2 ⊗ ψ1

ψ4
3 = ψ4

2 ⊗ ψ1

ψ5
3 = ψ1

2 ⊗ φ1

ψ6
3 = φ22 ⊗ φ1

ψ7
3 = ψ3

2 ⊗ φ1

φ3 = φ2 ⊗ φ1.

3. Higher dimensions

The number of functions needed depends of the number of dimensions as 2d,
where d are the dimensions. So there are two filters for 1D (21), four filters for 2D
(22), eight filters for 3D (23) and so on.
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For the 4D case the filters are:

(5) 4D =


ψ1
4 = ψ1

3 ⊗ ψ1

. . .

ψ15
4 = ψ7

3 ⊗ φ1

φ4 = φ3 ⊗ φ1.

Hence, generalizing to any dimensions:

(6) nD =


ψ1
n = ψ1

n−1 ⊗ ψ1

. . .

ψ2n−1
n = ψk

n−1 ⊗ φ1

φn = φn−1 ⊗ φ1.

4. Haar transform

The Haar transform is the simplest of the wavelet transforms. This transform
is computed by convolving the signal to be transformed with all necessary Haar
functions and by subsampling accordingly afterwords.

The single-level 1D transform x̂ is described by the following two 1D-convolutions:

(7) x̂(k1) =



∞∑
u1=−∞

ψ1(u1)x(k1 − u1)

∞∑
u1=−∞

φ1(u1)x(k1 − u1)

and by analogy the 2D traansform is given by the following four 2D-convolutions:

(8) x̂(k1, k2) =



∞∑
u1=−∞

∞∑
u2=−∞

ψ1
2(u1, u2)x(k1 − u1, k2 − u2)

∞∑
u1=−∞

∞∑
u2=−∞

ψ2
2(u1, u2)x(k1 − u1, k2 − u2)

∞∑
u1=−∞

∞∑
u2=−∞

ψ3
2(u1, u2)x(k1 − u1, k2 − u2)

∞∑
u1=−∞

∞∑
u2=−∞

φ2(u1, u2)x(k1 − u1, k2 − u2).

In previous equations the interval of u variables is infinite; in practice however,
convolutions are usually computed for finite intervals. Generalizing to d dimensions,
then we will have x̂ computed by 2d d-dimensional convolutions:
(9)

x̂(k1, . . . , kd) =



∞∑
u1=−∞

. . .

∞∑
ud=−∞

ψ1
d(u1, . . . , ud)x(k1 − u1, . . . , kd − ud)

. . .
∞∑

u1=−∞
. . .

∞∑
ud=−∞

ψ2d−1
d (u1, . . . , ud)x(k1 − u1, . . . , kd − ud)

∞∑
u1=−∞

. . .

∞∑
ud=−∞

φd(u1, . . . , ud)x(k1 − u1, . . . , kd − ud).
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4.1. Separable convolutions. Computing multidimensional convolutions can be
complicated or too impractical sometimes. For this reason, in some specific cases,
a multidimensional convolution can be computed as one-dimensional convolution
along all dimensions. The necessary condition to have convolution computed this
way is that at least one of the signals being convolved must be separable. A signal
is said to be separable if it can be written as product of one-dimensional signals:

(10) x(u1, . . . , ud) = f1(u1)f2(u2) . . . fd(ud) =

D∏
d=1

fd(ud).

In this case we can compute the so-called row-column convolution, described below.

4.1.1. 2D case. Given a 2D-signals x and the 2D Haar functions as described above,
than a separable convolution for the 2D Haar transform is described as:

x̂(k1, k2) =

∞∑
u1=−∞

∞∑
u2=−∞

ψp
2(u1, u2)x(k1 − u1, k2 − u2)(11)

=
∞∑

u1=−∞

∞∑
u2=−∞

ψ
(p,1)
2 (u1)ψ

(p,2)
2 (u2)x(k1 − u1, k2 − u2)(12)

=

∞∑
u1=−∞

ψ
(p,1)
2 (u1)

[ ∞∑
u2=−∞

ψ
(p,2)
2 (u2)x(k1 − u1, k2 − u2)

]
(13)

for any filter p of the 2D Haar functions.

4.1.2. General n-dimensional case. The muldidimensional Haar transform can be
computed as sequences of 1D Haar transform along all dimensions. A separable
convolution for the d-dimensional Haar transform can be written infact as:

(14)
∞∑

u1=−∞
ψ
(p,1)
d (u1)

[ ∞∑
u2=−∞

ψ
(p,2)
d (u2) . . .

[ ∞∑
ud=−∞

ψ
(p,d)
d (ud)x(k1 − u1, . . . , kd − ud)

]
. . .

]
.


