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Introduction

I Geometry of interactions is a program for proof-theory

I It develops a logic of actions, i.e. non-reusable facts (vs.
situations)

I The meaning of a formula is in its proof, not in its truth

I Each proof has and underlying geometrical structure

I G. of I. replaces static infinite situations by finite dynamic
situations that lie in the geometrical structure of Gentzen’s
Hauptsatz
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Basic logical commitments (1)

I Following Hilbert’s program, it was possible to reduce any
scientific activity to mathematics

I It is only through very heavy and ad-hoc paraphrases that real
implication may be put into mathemtics (usually by adding a
parameter for time)

I The logical laws extracted from mathematics are only adapted
to eternal truth; the same principles applied in real life lead to
absurdity because of the interactive nature of real implication
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Basic logical commitments (2)

I Tertium non datur: A ∨ ¬A

I It leaves no room for proof: if reality exists prior to anything
else, proofs should be seen as a subjective process of
understanding the real world

I Intuitionism proposed: proofs as functions (Heyting’s
semanthics)

I Geometry of interactions proposes: proofs as actions

I The logical twist from functions to actions leads to linear logic
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Actions vs. situations

I Classical/intuitionistic logics deal with stable truth:
if A and A⇒ B then B (A still holds)

I In real life implication is causal: cannot be iterated since
conditions are modified after use (reaction)

I Objection: there are both in real life and in mathematics cases
where reactions are negligible (situations)

I To cope with situations, special connectives (exponentials) are
needed: ! and ?, where ! means infinite iterability

I It is possible to define a new type of implication called linear
implication (→) such as:
A⇒ B = (!A)→ B

Carmine-Emanuele Cella A survey on Geometry of Interactions



Foundation: linear logic
Proof-nets

Geometry of interactions

Actions vs. situations

I Classical/intuitionistic logics deal with stable truth:
if A and A⇒ B then B (A still holds)

I In real life implication is causal: cannot be iterated since
conditions are modified after use (reaction)

I Objection: there are both in real life and in mathematics cases
where reactions are negligible (situations)

I To cope with situations, special connectives (exponentials) are
needed: ! and ?, where ! means infinite iterability

I It is possible to define a new type of implication called linear
implication (→) such as:
A⇒ B = (!A)→ B

Carmine-Emanuele Cella A survey on Geometry of Interactions



Foundation: linear logic
Proof-nets

Geometry of interactions

Actions vs. situations

I Classical/intuitionistic logics deal with stable truth:
if A and A⇒ B then B (A still holds)

I In real life implication is causal: cannot be iterated since
conditions are modified after use (reaction)

I Objection: there are both in real life and in mathematics cases
where reactions are negligible (situations)

I To cope with situations, special connectives (exponentials) are
needed: ! and ?, where ! means infinite iterability

I It is possible to define a new type of implication called linear
implication (→) such as:
A⇒ B = (!A)→ B

Carmine-Emanuele Cella A survey on Geometry of Interactions



Foundation: linear logic
Proof-nets

Geometry of interactions

Actions vs. situations

I Classical/intuitionistic logics deal with stable truth:
if A and A⇒ B then B (A still holds)

I In real life implication is causal: cannot be iterated since
conditions are modified after use (reaction)

I Objection: there are both in real life and in mathematics cases
where reactions are negligible (situations)

I To cope with situations, special connectives (exponentials) are
needed: ! and ?, where ! means infinite iterability

I It is possible to define a new type of implication called linear
implication (→) such as:
A⇒ B = (!A)→ B

Carmine-Emanuele Cella A survey on Geometry of Interactions



Foundation: linear logic
Proof-nets

Geometry of interactions

Actions vs. situations

I Classical/intuitionistic logics deal with stable truth:
if A and A⇒ B then B (A still holds)

I In real life implication is causal: cannot be iterated since
conditions are modified after use (reaction)

I Objection: there are both in real life and in mathematics cases
where reactions are negligible (situations)

I To cope with situations, special connectives (exponentials) are
needed: ! and ?, where ! means infinite iterability

I It is possible to define a new type of implication called linear
implication (→) such as:
A⇒ B = (!A)→ B

Carmine-Emanuele Cella A survey on Geometry of Interactions



Foundation: linear logic
Proof-nets

Geometry of interactions

Operators (1)

I In linear logic, two conjunctions coexist: ⊗ and &

I They correspond to two radically different uses of the word
and, expressing the availability of two actions: in ⊗ both will
be done, while in & only one (that must be chosen) will be
performed

I Example: A = to spend $1, B = to get a pack of Camels,
C = to get a pack of Marlboro

I Given A→ B and A→ C it’s impossible to form A→ B ⊗ C
(getting two packs of cigarettes for $1)

I It’s anyway possible to form A→ B&C
(superposition of two actions)

I This corresponds to IF . . . THEN . . . ELSE
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Operators (2)

I Two disjunctions coexist: ⊕ (dual of &) and &(dual of ⊗)

I The meaning of ⊕ is to express two actions together

I The meaning of &is more complex and is related to linear
neagation: &is the symmetric form of linear implication
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States and transitions (1)

I The notions of state has been overlooked in mathematics: eg.
the current state of a Petri net, the current state of a Turing
machine, the current position of a chessboard, the current list
of beliefs in an expert system, . . .

I In all cases it is needed to introduce a temporal paramter to
pass, say, from state S modelized as (S , t) to a new state
modelized as (S ′, t + 1); this is very akward

I It is better to represent states by formulas and trasitions by
implications of states; in such a way S is accessible from S ′
when S → S ′ is provable from the transitions, taken as axioms

I Example: chemical equations; in usual logic the
phenomenon of updating cannot be represented
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States and transitions (2)

I The rules of classical logic
A⇒ A ∧ A and A ∧ B ⇒ A
become wrong when ⇒ is replaced by → and ∧ is replaced by
⊗

I The first says that proportions don’t matter; the second would
enable us to add an atom of carbon to the left that is not
present on the right

I The first is a way of writing contraction, while the second is a
way of writing weakening

I Example: formal grammars; it shows clearly the connection
between linear logic and computation processes, that’s why
linear logic finds a natural application in computer science

Carmine-Emanuele Cella A survey on Geometry of Interactions



Foundation: linear logic
Proof-nets

Geometry of interactions

States and transitions (2)

I The rules of classical logic
A⇒ A ∧ A and A ∧ B ⇒ A
become wrong when ⇒ is replaced by → and ∧ is replaced by
⊗

I The first says that proportions don’t matter; the second would
enable us to add an atom of carbon to the left that is not
present on the right

I The first is a way of writing contraction, while the second is a
way of writing weakening

I Example: formal grammars; it shows clearly the connection
between linear logic and computation processes, that’s why
linear logic finds a natural application in computer science

Carmine-Emanuele Cella A survey on Geometry of Interactions



Foundation: linear logic
Proof-nets

Geometry of interactions

States and transitions (2)

I The rules of classical logic
A⇒ A ∧ A and A ∧ B ⇒ A
become wrong when ⇒ is replaced by → and ∧ is replaced by
⊗

I The first says that proportions don’t matter; the second would
enable us to add an atom of carbon to the left that is not
present on the right

I The first is a way of writing contraction, while the second is a
way of writing weakening

I Example: formal grammars; it shows clearly the connection
between linear logic and computation processes, that’s why
linear logic finds a natural application in computer science

Carmine-Emanuele Cella A survey on Geometry of Interactions



Foundation: linear logic
Proof-nets

Geometry of interactions

States and transitions (2)

I The rules of classical logic
A⇒ A ∧ A and A ∧ B ⇒ A
become wrong when ⇒ is replaced by → and ∧ is replaced by
⊗

I The first says that proportions don’t matter; the second would
enable us to add an atom of carbon to the left that is not
present on the right

I The first is a way of writing contraction, while the second is a
way of writing weakening

I Example: formal grammars; it shows clearly the connection
between linear logic and computation processes, that’s why
linear logic finds a natural application in computer science

Carmine-Emanuele Cella A survey on Geometry of Interactions



Foundation: linear logic
Proof-nets

Geometry of interactions

States and transitions (3)

I Theory = linear logic + axioms + current state

I The axioms are forever, the current state us available for a
single use

I When a state has been used to prove another state, the
theory is updated and the proved state becomes the current
state
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Linear negation

I Linear negation (⊥) is the only negative operation of linear
logic

I Can be defined as: A→ B = A⊥ &B

I It behaves like transposition in linear algebra (A→ B is the
same as B⊥ → A⊥)

I It expresses duality: action of type A = reaction of type A⊥
I Property: A = A⊥⊥ (like in classical logic)

I It is more primitive (stronger) than usual negation
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Sequent calculus

I Introduced by Gentzen in 1934 as a tool for studying basic
laws of logic

I It is made of three major structural rules: weakening,
contraction, exchange

I Weakening: it speaks of causes without effects; it allows not
to use all hypothesis in a deduction

I Contraction: it speaks about infinity; it says that what you
have, you will always keep no matter how you use it

I Exchange: it expresses the commutativity of multiplicative
operators; it exists to achieve more expressive power
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Linear sequent calculus (1)

I By combining structural rules we obtain different kinds of logic

I C+W+E = classical logic

I W+E = affine logic

I E = linear logic

I nothing = non-commutative linear logic
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Linear sequent calculus (2)

I It is possible to define a full sequent calculus for linear logic,
made of structural, identity and logical groups

I Structural group will be made only of exchange

I Idendity group will be made of identity axiom and of the
cut-rule

I Logical group will contain additives (disjunctions),
multiplicatives (conjunctions) and exponentials (modalities)

I The only dynamical feature of the system is the cut-rule: it
puts together an action and a reaction of the same type
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Linear sequent calculus (3)

The calculus consist of replacing hypothesis with conclusions
(axioms) and vice-versa (cut-rule):

16 Jean-Yves Girard

(“commutative conversions”) then becomes extremely complex and awkward.

1.3.3 The identity links

We shall find a way of fixing defects (1)–(4) in the context of the multiplicative
fragment of linear logic, i.e. the only connectives ⊗ and

&

(and also implicitly
−◦). The idea is to put everything in conclusion ; however, when we pass
from a hypothesis to a conclusion we must indicate the change by means of
a negation symbol. There will be two basic links enabling one to replace a
hypothesis with a conclusion and vice versa, namely

(axiom link)

A A⊥

(cut link)

A A⊥

By far the best explanation of these two links can be taken from electronics.
Think of a sequent Γ as the interface of some electronic equipment, this inter-
face being made of plugs of various forms A1, . . . , An ; the negation corresponds
to the complementarity between male and female plugs. Now a proof of Γ can
be seen as any equipment with interface Γ. For instance the axiom link is such
a unit and it exists in everyday life as the extension cord :

A⊥ A

Now, the cut link is well explained as a plugging :

. . . ∆. . .

A A⊥
Γ

The main property of the extension cord is that

. . .Γ

behaves like

. . .Γ

It seems that the ultimate, deep meaning of cut-elimination is located there.
Moreover observe that common sense would forbid self-plugging of an extension
cord :

An electrical representation of which is:
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Proof-structures

If we accept two additional links:
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which would correspond, in terms of proof-nets to the incestuous configuration :

A A⊥

which is not acknowledged as a proof-net ; in fact in some sense the ultimate
meaning of the correctness criterion that will be stated below is to forbid such
a configuration (and also disconnected ones).

1.3.4 Proof-structures

If we accept the additional links :

A B
(times link)

A⊗B

A B
(par link)

A

&

B

then we can associate to any proof of − Γ in linear sequent calculus a graph-
like proof-structure with as conclusions the formulas of Γ. More precisely :

1. To the identity axiom associate an axiom link.

2. Do not interpret the exchange rule (this rule does not affect conclusions ;
however, if we insist on writing a proof-structure on a plane, the effect of the
rule can be seen as introducing crossings between axiom links ; planar proof-
structures will therefore correspond to proofs in some non-commutative vari-
ants of linear logic).

3. If a proof-structure β ending with Γ, A and B has been associated to a
proof π of − Γ, A,B and if one now applies a “par” rule to this proof to
get a proof π′ of − Γ, A

&

B , then the structure β ′ associated to π′ will be
obtained from β by linking A and B via a par link : therefore A and B are
no longer conclusions, and a new conclusion A

&

B is created.

4. If π1 is a proof of − Γ, A and π2 is a proof of − B, ∆ to which proof-
structures β1 and β2 have been associated, then the proof π′ obtained from π1

and π2 by means of a times rule is interpreted by means of the proof structure
β obtained from β1 and β2 by linking A and B together via a times link.
Therefore A and B are no longer conclusions and a new conclusion A ⊗ B
is created.

5. If π1 is a proof of − Γ, A and π2 is a proof of − A⊥, ∆ to which
proof-structures β1 and β2 have been associated, then the proof π′ obtained
from π1 and π2 by means of a cut rule is interpreted by means of the proof
structure β obtained from β1 and β2 by linking A and A⊥ together via a cut
link. Therefore A and A⊥ are no longer conclusions.

then we can associate any proof in a linear sequent calculus a
graph-like proof structure.
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Proof-nets

I A proof-structure is nothing but a graph whose vertices are
formulas and whose edges are links; moreover each formula is
the conclusion of exactly one link and premise of at most one
link

I The formulas which are not premises are conclusions of the
structure

I Inside proof-structures let’s call proof-nets those which can be
obtained as the interpretation of sequent calculus proofs
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Cut-elimination for proof-nets

I The keypoint is to find an independent characterization of
proof-nets (to get rid of syntax)

I This can be achieved by handling syntactic manipulations at
the level of proof-nets

I This is done by means of the cut-elimination procedure, that
has good properties:

I it enjoys the Church-Rosser property (confluence);
I it is linear in time;
I the treatment of multiplicative fragment is purely local; in fact

all cut-links can be simultaneously eliminated

Carmine-Emanuele Cella A survey on Geometry of Interactions



Foundation: linear logic
Proof-nets

Geometry of interactions

Cut-elimination for proof-nets

I The keypoint is to find an independent characterization of
proof-nets (to get rid of syntax)

I This can be achieved by handling syntactic manipulations at
the level of proof-nets

I This is done by means of the cut-elimination procedure, that
has good properties:

I it enjoys the Church-Rosser property (confluence);
I it is linear in time;
I the treatment of multiplicative fragment is purely local; in fact

all cut-links can be simultaneously eliminated

Carmine-Emanuele Cella A survey on Geometry of Interactions



Foundation: linear logic
Proof-nets

Geometry of interactions

Cut-elimination for proof-nets

I The keypoint is to find an independent characterization of
proof-nets (to get rid of syntax)

I This can be achieved by handling syntactic manipulations at
the level of proof-nets

I This is done by means of the cut-elimination procedure, that
has good properties:

I it enjoys the Church-Rosser property (confluence);
I it is linear in time;
I the treatment of multiplicative fragment is purely local; in fact

all cut-links can be simultaneously eliminated

Carmine-Emanuele Cella A survey on Geometry of Interactions



Foundation: linear logic
Proof-nets
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Coherent semantics

I The only existant semantics for mathematics are denotational
(i.e. static), such as Scott semantics

I These semantics interpret proofs as functions instead of
actions

I There is no name for such operational semantics, that’s why
Girard introduced the expression
GEOMETRY OF INTERACTIONS

I The inadequation of the denotational semantics for
computation becomes conspicuous if we note that such
semantics will have a strong tendency to be infinite, whereas
programs are finite dynamical processes
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Geometry of interactions

Against subjectivism

I What is closest to the idea of dynamics is syntax, which
makes all the necessary distinctions of sense and is finite

I This leads to the opposition: geometry / taxonomy
(categories)

I The problem with syntax is that it contains irrelevant
informations of temporal nature

I It is therefore needed to find what’s hidden behind syntax
without going to denotation: a non-subjectivistic approach to
sense

I There should be a purely geometrical notion of finite
dynamical structure; in other words there should be a
geometrical interpretation of Gentzen Hauptsatz
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Geometry of interactions

Phase space

I A phase space is a pair (M,⊥) where M is a commutative
monoid (multiplicative) and ⊥ is a subset of M

I Given two subsets X ,Y of M it is possible to define
X → Y := {m ∈ M; ∀n ∈ X ; mn ∈ Y }

I It’s also possible to define for each subset X of M its
orthogonal: X⊥ := X → ⊥

I A fact is any subset of M equal to its orthogonal; it is
immediate that X → Y is a fact is Y is a fact
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Interpretation of the connectives

It’s possible to interpret all the operations in linear logic by
operations on facts:

Linear logic : its syntax and semantics 23

2 THE SEMANTICS OF LINEAR LOGIC

2.1 The phase semantics of linear logic
The most traditional, and also the less interesting semantics of linear logic
associates values to formulas, in the spirit of classical model theory. Therefore
it only modelizes provability, and not proofs.

2.1.1 Phase spaces

A phase space is a pair (M,⊥), where M is a commutative monoid (usually
written multiplicatively) and ⊥ is a subset of M . Given two subsets X and Y
of M , one can define X −◦ Y := {m ∈ M ; ∀n ∈ X mn ∈ Y }. In particular,
we can define for each subset X of M its orthogonal X⊥ := X −◦ ⊥. A fact
is any subset of M equal to its biorthogonal, or equivalently any subset of the
form Y ⊥. It is immediate that X −◦ Y is a fact as soon as Y is a fact.

2.1.2 Interpretation of the connectives

The basic idea is to interpret all the operations of linear logic by operations
on facts : once this is done the interpretation of the language is more or less
immediate. We shall use the same notation for the interpretation, hence for
instance X ⊗ Y will be the fact interpreting the tensorization of two formulas
respectively interpreted by X and Y . This suggests that we already know how
to interpret ⊥, linear implication and linear negation.

1. times : X ⊗ Y := {mn ; m ∈ X ∧ n ∈ Y }⊥⊥

2. par : X

&

Y := (X⊥ ⊗ Y ⊥)⊥

3. 1 : 1 := {1}⊥⊥, where 1 is the neutral element of M

4. plus : X ⊕ Y := (X ∪ Y )⊥⊥

5. with : X&Y := X ∩ Y

6. zero : 0 := ∅⊥⊥

7. true : , := M

8. of course : !X := (X ∩ I)⊥⊥, where I is the set of idempotents of M which
belong to 1

9. why not : ?X := (X⊥ ∩ I)⊥

(The interpretation of exponentials is an improvement of the original definition
of [12] which was awfully ad hoc). This is enough to define what is a model of

It’s easily seen that this semantics is sound and complete.
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Coherent spaces

I A coherent space is a reflexive undirected graph. In other
terms it consists of a set |X | of atoms together with
compatibility or coherence relation between atoms, noted
x ^_ y or y ^_ x [modX ] if there is any ambiguity as to X

I Given a coherent space X, its linear negation X⊥ is defined
by:

I |X⊥| = |X |
I x ^_ y [modX⊥] iff x ^_ y [modX ]

I It is possible to define in this way all operators of linear logic
(multiplicatives, additives, exponentials) to create a complete
semantics
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Geometry of interactions (1)

In a previous example we represented the links for proof-nets as
electrical plugs; this is possible for all rules in linear logic, such as
⊗− rule and &− rule:

Linear logic : its syntax and semantics 37

The interpretation of the rules for ⊗ and

&

both use the following well-
known fact : two pins can be reduced to one (typical example : stereophonic
broadcast).

! ⊗-rule : from units π, λ with respective interfaces − Γ, A and − ∆, B , we
can built a new one by merging plugs A and B into another one (labelled
A⊗B) by means of an encoder.

Γ
π A

A⊗B

Bλ
∆

!

&

-rule : from a unit µ with an interface − C,D, Λ , we can built a new
one by merging plugs C and D into a new one (labelled C

&

D) by means
of an encoder :

C

D µ

. .

. . . Λ

C

&

D

.

To understand what happens, let us assume that C = A⊥, D = B⊥ ; then
A⊥

&

B⊥ = (A ⊗ B)⊥, so there is the possibility of plugging. We therefore
obtain

. . .

. . . Λ

A⊥

µB⊥
A⊥

&

B⊥A⊗B

Γ
π A

λ B
∆

But the configuration

is equivalent to (if the coders are the same)
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Geometry of interactions (2)

I If we interpret the electrical encoders as ⊗− or &− link, we
get a very precise modelization of cut-elimination of proof-nets

I Since this coding is based on the development by means of
Fourier series (which involve Hilbert space), everything that
was done can be formulated in terms of operator algebras
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Geometry of interactions (3)

I The general formula for cut-elimination (execution formula) is
the following:
EX (u, φ) := (1− φ2)u(1− φu)−1(1− φ2)

I This gives the interpretation of the elimination of cuts
(represented by φ) in a proof represented by u

I Termination of the process is interpreted as the nilpotency of
φu and the part u(1− φu)−1 is a candidate for the execution
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Proof-nets

Geometry of interactions

Interpretation of System F (1)

Given M and n it’s possible to define the oriented graph Gn(M)
such as:

I Nodes: λ-abstraction and applications (box nodes)

I Edges: labelled with weight

I One exiting edge per free variable plus one entering edge for M
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Interpretation of System F (2)

Variable case:

G ( )

! ( )
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Geometry of interactions

Interpretation of System F (3)

Abstraction:

G (λ )

G ( ) G ( )

λ
! ( )! ( )

λ
! ( )! ( )
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Interpretation of System F (4)

Application:
G ( )

! ( )

! ( ) ! ( )

! ( ) ! ( )

G ( ) G + ( )

! ( )
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Comments

I Geometry of interactions is a semantics for linear logic

I Its basic idea is to remove taxonomy (i.e. temporality) by
means of something like proof-nets, in order to give the
maximum degree of freedom for the execution of a program

I Logical rules should not be symmetric w.r.t. time

I Processes communicates without understanding each other
(by means of global operations such as erasing, duplicating,
sending back)
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