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1 Context

Logistic regression and artificial neural networks (ANN) are statistical learning
models that provide a functional form f and parameter vector θ to express class
membership probability (in a binary classification context)1 of x as:

fθ(x) = log

(
P(1|x)

P(0|x)

)
. (1)

The parameters are determined based on the data by maximum-likelihood
estimation.

1.1 Logistic regression

The functional form for logistic regression is given by the dot product between
data and parameters, plus some constants (biases): fθ(x) = θ · x + b. By
adding and additional component 1 to all data vectors it is possible to avoid the
constant, thus having fθ(x) = θ · x.

A binary logistic regression calculates the class membership probability for
one of the two categories in a data set:

P(1|x, θ) =
1

1 + e−fθ(x)
(2)

and P(0|x, θ) = 1−P(1|x, θ). The hyperplane of all points x satisfying θ ·x = 0
forms the decision boundary between the two classes.

Computing the maximum likelihood estimation of the optimal parameters
means maximizing

∏N
i=1 P(yi|xi, θ).

1.2 Artificial neural networks

The functional form for ANN depends on the nonlinearity used and on the
general architecture. For a typical ANN with 1 input layer, 1 hidden layer and
1 output layer it can be defined as fθh,θo(x) = b+ θo ·σ(c+ θh ·x) where b, c are
biases, θo, θh are the parameters for output and hidden layer respectively and σ

1This approach can be nonetheless generalized to any number of classes.
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is a nonlinearity. Also in this case it is possible to remove the biases by adding a
component to all data points in any layer, thus having fθh,θo(x) = θo · σ(θh · x).
Therefore, for a feedforward multi-layer network, the final output is given by:

P(1|x, θh, θo) =
1

1 + e−θo·fθh (x)
. (3)

It is important to remark that in this context the output has a probabilistic
form because of the constraints imposed in equation 1; namely, this is achived
in ANN by embedding the output neurons into a function called softmax :

softmax(a) =
eai∑
j e
a
j

. (4)

Also in this case, the parameters are computed by maximum-likelihood es-
timation. While the functional forms for logistic regression and ANN models
differ, in this context, a network without hidden layers is actually
identical to a logistic regression model. The effect of the nonlinearity in
the hidden layers is that the output of ANN can be a nonlinear function of
the inputs; for this reason, in a classification context, the decision boundary
can be nonlinear as well, making the model more flexible compared to logistic
regression.

2 Parameter estimation

As stated above, for both logistic regression and ANN, the parameters are de-
termined by maximizing the likelihood

∏N
i=1 P(yi|xi, θ). From a computational

standpoint, it is usually easier to minimize the negative log probability (also
called loss-function):

L = −
N∑
i=1

log(P(yi|xi, θ)). (5)

This is called negative log likelihood criterion and can be done with several
optimization algorithms, from simple gradient descent to second-order methods.

It is possible to apply a regularization criterion to the parameters in the
form ‖θ‖22 =

∑
i θ

2
j (Frobœnius norm).

2.1 Backprogragation and gradient descent

A typical way used both in logistic regression and ANN for minimizing the
negative log probability is by updating the parameters θ (backpropagation) by
means of the applycation of a gradient descent in a stochastic way, thus only
selecting random samples t during the calculation:

θ ← θ − ε(2λθ +∇θL(fθ(x
t), yt)) (6)

where L is the loss functin as described above, ε is a constant called learning rate,
and λ is a regularization factor (for logistic regression, normally ε = 1, λ = 0).
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