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Abstract

In this short note we will define a method to group together several vectors of scattering coefficients
that represent quasi-stationary signals at different scales. The main idea consists in embedding the
scattering coefficients into a diffusion map that can be further used for clustering. This process can be
done recursively by splitting in halves the input signal, thus creating a full decomposition tree up to a
given order.

I. Diffusion embedding

Let x ∈ Cd be an observation and let {Φx}n≤N be the corresponding set of vectors of scattering
coefficients of first and second order at all scales up to a given scale 2J ; the set of vectors is
computed by patching x at scale 2J , overlapping the patches by half. Let Fi,i be the scattering
flow of {Φx}n≤N , a symmetric matrix whose entries are the sum of the modulus of the pairwise
difference of the coefficients:

Fi,i =


∑ |Φx1 −Φx2| × × × ∑ |Φx1 −Φxi|

× × × ×
× × ×

= × ×
∑ |Φxi −Φxi|

 . (1)

Let Ai,i be the adjacency matrix of Fi,i, created by applying to it an affinity metric with a
Gaussian kernel:

Ai,i = e
−
(
Fi,i
2σ2

)
(2)

where σ2 is the variance of the kernel which determines the scale of the affinity metric; it depends
on the nature of x and must be carefully set. In this context we decided to set this value equal to
the centroid of the histogram of Fi,i:

σ = ∑
h

(
h · p(h)
∑h p(h)

)
(3)

where p(h) is the value of the histogram at position h. Let then Li,i be the normalized Laplacian
matrix of x defined as:

Li,i = D−1/2
i,i Ai,iD−1/2

i,i (4)
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where Di,i = ∑jAi,j is the degree matrix.
The matrix Li,j is symmetric and can be decomposed in principal eigenvalues {λl}λ≤Λ and

biorthogonal left and right eigenvectors {ψl}λ≤Λ, {φl}λ≤Λ respectively.
Due to the fast decay of the eigenvalues, only a few terms are necessary to achieve a given

relative accuracy in the decomposition. Thus, using the first two largest eigenvectors it is possible
to create a 2-dimensional space, called diffusion embedding, which is embedded in the original
space. Given the low dimensionality of the this space, it is possible to apply a binary clustering
to partition it into two clusters; the whole process (with minor variations) is often called spectral
clustering.

With labels provided by the clustering, we then created two streams {S1
p}p≤P

, {S2
q}q≤Q

by

selecting the corresponding elements from {Φx}n≤N . Each stream has an independent time scale
but contains information that can be considered quasi-stationary. The process is then recursively
applied on each stream thus creating a hierarchical decomposition tree up to a given order W.

II. Kernel learning and signal-dependent representations

Once the vectors of scattering coefficients are consistently grouped together, it is possible to
estimate a representative kernel per group in several ways. In this context we decided to take
the maximum of each vector belonging to the stream, thus creating a set of coefficients whose
length depends on the time scale of the stream. Given the logarithmic nature of the hierarchical
decomposition, the total number of kernels { f x

k }k≤K is K = 2W .
By convolving each kernel with the whole original set of vectors, it is possible to create a set of

feature maps that creates a signal-dependent representation of x:

Φ̃x = {Φx ∗ f x
k }k≤K. (5)
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