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Abstract

In this short note we will define a method to group together several vectors of scattering coefficients
that represent quasi-stationary signals at different scales. The main idea consists in embedding the
scattering coefficients into a diffusion map that can be further used for clustering. This process can be
done recursively by splitting in halves the input signal, thus creating a full decomposition tree up to a
given order.

I. DIFFUSION EMBEDDING

Let x € C? be an observation and let {®x}, ) be the corresponding set of vectors of scattering
coefficients of first and second order at all scales up to a given scale 2/; the set of vectors is
computed by patching x at scale 2/, overlapping the patches by half. Let F;; be the scattering
flow of {®Px}, -\, a symmetric matrix whose entries are the sum of the modulus of the pairwise
difference of the coefficients:
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Let A;; be the adjacency matrix of F;;, created by applying to it an affinity metric with a
Gaussian kernel:
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where 02 is the variance of the kernel which determines the scale of the affinity metric; it depends

on the nature of x and must be carefully set. In this context we decided to set this value equal to
the centroid of the histogram of F; ;:
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where p(h) is the value of the histogram at position 1. Let then £;; be the normalized Laplacian
matrix of x defined as:
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where D;; =} A is the degree matrix.

The matrix £;; is symmetric and can be decomposed in principal eigenvalues {A;},-, and
biorthogonal left and right eigenvectors {y;}, A, {¢1} < respectively.

Due to the fast decay of the eigenvalues, only a few terms are necessary to achieve a given
relative accuracy in the decomposition. Thus, using the first two largest eigenvectors it is possible
to create a 2-dimensional space, called diffusion embedding, which is embedded in the original
space. Given the low dimensionality of the this space, it is possible to apply a binary clustering
to partition it into two clusters; the whole process (with minor variations) is often called spectral
clustering.

With labels provided by the clustering, we then created two streams {S;}p _p {S%}q <0 by

selecting the corresponding elements from {®x}, . Each stream has an independent time scale
but contains information that can be considered quasi-stationary. The process is then recursively
applied on each stream thus creating a hierarchical decomposition tree up to a given order W.

II. KERNEL LEARNING AND SIGNAL-DEPENDENT REPRESENTATIONS

Once the vectors of scattering coefficients are consistently grouped together, it is possible to
estimate a representative kernel per group in several ways. In this context we decided to take
the maximum of each vector belonging to the stream, thus creating a set of coefficients whose
length depends on the time scale of the stream. Given the logarithmic nature of the hierarchical
decomposition, the total number of kernels {f}, . is K =2".

By convolving each kernel with the whole original set of vectors, it is possible to create a set of
feature maps that creates a signal-dependent representation of x:
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