
ON THE GEOMETRIC INTERPRETATION OF SIGNALS

CARMINE-EMANUELE CELLA

This note will provide a brief introduction to the geometrical representation of
signals. After some background material in linear algebra, the concepts of analysis
and synthesis will be explained and the idea of convolution will be defined. More
complete material on linear algebra and related to signals can be found in the
references.

1. Vector spaces

Discrete signals x of length n can be thought as a multidimensional vectors in
Rn or Cn. As such, they can be added with other vectors and multiplied by scalars
as follows:

(1) a1v1 + a2v2 . . .+ anvn

where an are scalars and vn are vectors.
Equation 1 is called a linear combination and a set of vectors that can be com-

bined in such way form a vector space.

1.1. Norm and metrics. On vector spaces can be computed several metrics:

• mean: M = 1
N

∑N−1
n=0 xn;

• energy : E =
∑N−1
n=0 |xn|2;

• power : P = E
N = 1

N

∑N−1
n=0 |xn|2;

• L2-norm: N =
√
E =

√∑N−1
n=0 |xn|2.

The latter metric, the norm, is often indicated as ‖x‖2 and represents the length
of the vector in a space. When a vector space has a defined norm, it is called a
Banach space. The L2-norm is said to be contractive, that is:

(2) ‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2

and it can be generalized to any order: Lp = ‖x‖p =
(∑N−1

n=0 |xn|p
) 1
p

.

2. Inner product

A very important operation, called inner product, can defined on a Banach space
as follows:

(3) 〈x, y〉 =

N−1∑
n=0

xnyn

1
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where x is the conjugate of x. A Banach space with a defined inner product is
called a Hilbert space. The specific form of inner product shown in equation 3 is
induced from the energy by taking the inner product of a vector with itself:

(4) 〈x, x〉 =

N−1∑
n=0

xnxn =

N−1∑
n=0

|xn|2 = ‖x‖22.

2.1. Properties. The inner product has several important properties, among which:

• Cauchy-Schwarz inequality : |〈x, y〉| ≤ ‖x‖ · ‖y‖;
• vector cosine: 〈x,y〉

‖x‖·‖y‖ ≤ 1 = cos(θ) where θ is the angle between the two
vectors.

2.2. Orthogonality. Two vectors are said to be orthogonal (indicated as x ⊥ y)
if their inner product is zero:

(5) x ⊥ y ≡ 〈x, y〉 = 0.

2.3. Projection. One of the most important applications of inner product is to
project one vector over another. The projection of x on y is defined as:

(6) Px(y) =
〈x, y〉
‖x‖2

· x

where the ratio between the inner product and the squared norm of x is called
coefficient of projection. Important examples of projection will be shown in the
following sections.

2.4. Reconstruction from projections. Under specific conditions, a vector can
be reconstruced from some projections by means of linear combination.

Let e0(1, 0) and e1(0, 1) be to perpendicular vectors such as 〈e0, e1〉 = 0 and let
x be a distinct vector in R2. The projection of x on e0 is given by:

Pe0(x) =
〈e0, x〉
‖e0‖2

· e0 = 〈e0, x〉 · e0

= (x0 · 1 + x1 · 0) = (x0, 0)

and, in the same way, the projection on e1 is given by Pe1(x) = (0, x1).
It is indeed possible to recover x by summing the computed projections:

x = Pe0(x) + Pe1(x) = x0 · e0 + x1 · e1
= x0 · (1, 0) + x1 · (0, 1) = (x0, x1).

It is important to remark that this reconstruction only works if the vectors on
which the projections are done are pairwise orthogonal; in case the used vectors for
projections are linearly independent but not orthogonal, they can be orthogonalized
by a method called Gram-Schmidt orthogonalization. Finally, if ‖en‖2 = 1 the set
of vectors are called orthonormal.
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2.5. Basis. The subspace covered by all linear combinations of a set of vectors
{s0, . . . , sn} is called span. If the set of vectors are linearly independent than the
span is called basis of the vector space. It is easy to show that in a space in Rd there
are d vectors in the basis for that space. Clearly, a vector can be reconstructed with
a linear combination from its projections on another set of vectors if and only if the
set used is a basis.

3. Analysis and synthesis

Previous sections showed that a vector in vector space can be written as a linear
combination of a basis for that space, by multiplying it by some constants and
summing the products.

It is therefore possible to define an analysis as the estimation of the constants
and a synthesis as the linear combination equation that recover the signal; follow-
ing subsections will clarify this important concept.

3.1. Analysis. The analysis is the representation φx of a signal given by the inner
product of it by a basis in a vector space; it is therefore given by the projection

(7) φx =
∑
t

x(t) ∗ bk = 〈x, bk〉

where bk is a given basis and t is time.

3.2. Synthesis. The synthesis is the reconstruction of the original signal x by the
summation of the products with the representation φx created by the analysis:

(8) x(t) =
∑
k

φxbk(t) =
∑
k

〈x, bk〉bk(t).

3.3. The discrete Fourier transform. The Fourier representation is interpretable
in the following context as a specific case of analysis and synthesis, where the basis
is given by a set of complex sinusouids: bk = ei2πk (where i is the imaginary unit).

The discrete Fourier analysis (DFT) will be therefore:

(9) x̂(k) =
∑
t

x(t)e
−i2πkt
T

and, in the same way, the reconstruction (or inverse Fourier transform, IDFT) is
given by:

(10) x(t) =
1

T

∑
k

x̂(k)e
i2πkt
T .

Since eiθ = cos(θ)+i sin(θ) by Euler identity, the basis given by complex sinusoids
made of linearly independent vectors); for this reason it is possible to recover exactly
the original signal as explained in section 2.4. Note, moreover, that the negative
i is forward Fourier analysis represents the conjugate of the basis, as prescribed
by equation 3. The normalization factor 1

T is necessary in order to preserve the
contraction property indicated in section 1.1.
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3.4. Different bases. The basis made of complex sinusoids is only a possible basis
among infinite. This basis focus on representig correctly frequencies and is therefore
well localized in frequency but is not localized in time. On the other hand, it is
possible to create a basis made of Dirac’s pulses that will provide perfect localization
in time but no localization in frequency.

A compromise between sinusoids and impulses is given by bases made of oscil-
lating signals with a temporal limitation, such as wavelets. A wavelet is a bandpass
filter centered on a specific frequency with a specific bandwidth that has there-
fore a localization both in time and frequency. The Gabor wavelet represent the
best compromise, in term of Heisenberg uncertainty principle, between time and
frequency. More information on this vast subject can be found in the references.

4. Convolution

Convolution is a mathematical operation defined in vector spaces that has impor-
tant applications in signals theory and it can be defined in term of inner product.
In general it is possible to say that the inner product between two vectors is:

(1) the projection of a vector onto the other as discussed in previous sections
(or, in other words, the product of magnitudes scaled by the angle between
the vectors);

(2) the sum of the elements of a vector, weighted by the elements of the other;
(3) the calculation of the similarity (covariance) of the two vectors.

The convolution then, can be defined as an inner product that is repeated over
time:

(11) (x ∗ h)t =
∑
m

x(t−m) ∗ h(m)

where h is called kernel and is of length m. The convolution is therefore:

(1) the time series given by a signal weighted by another that slides along;
(2) the cross-variance between two signals (similarity in time);
(3) the time series given the mapping between to signals;
(4) a filtering process.

4.1. The convolution theorem. There is an important relation between the DFT
and convolution: the convolution in time domain between to signals is equal to the
product of the DFT of them. Formally:

(12) x ∗ h ≡ x̂ · ĥ

where x̂, ĥ are DFTs of respective signals.
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