CARMINE-EMANUELE CELLA

INTRODUCTION TO
PAILH DESIGN IN MAX

Why patch design?

* Realtime performances of mixed music (instruments + live electronics)
* Realtime improvisation with live electronics

* Longevity and reproducibility of the electronic score

* Reusability of the implemented algorithms

o At the origin of Max/MSP (from Ircam to Cycling74)

* It has nothing to do with the graphical appearance of the patch

Algorithm design vs patch design

» Algorithm design focuses on the low-level principles of programming

* A well designhed algorithm is not always efficient in realtime performances
 Pedagogically, it is easier to focus on algorithm design than patch design
 Patch design is the good way to implement an algorithm

 Patch design refactors a well designed algorithm into an equivalent algorithm
that Is meant to be used In realtime

Overview (1/2)

Output

Section

Input

Section

Main patch

Scene

Manager

Processors

(front-end)

Routing

Matrix

Init

Reset

DAC

Overview (2/2)

* |nput/output sections: handle the physical audio channels of the patch (eg. microphones,
speakers, spatialiser)

 Scene manager: handles the electronic score (presets of parameters for the whole patch)

* Processors: are the effects and/or the synthesisers; specific parameters must not be
exposed in the main patch

* Routing matrix: handles the connections between the effects, the synthesisers and the
physical audio channels

* |nit button: sets the beginning state of the patch, must be used once (eg. Load audio files,
setup ambisonic speakers, ...)

* Reset button: neutral scene of the patch (useful during rehearsals)

Example: main patch

o A

Checklist Performance time IMPROVVISI STATICI - concert patch by C. E. Ce

Start hore! 0:0:0 |]

SAX

Hilbert: /Users/Carmine /Projects/Music/Composi
tions/Improvvisi_statici/concert_patches/sample

o
48

SLOW CIRCULAR (src1)
(lose all FAST RANDOM (src2)

UP FRONT (sre3)
DOWN REAR (srcd)

CENTERED (src5)
FRONT REAR (src6)
SWARM (src7)
BEATINGS (src8)

Harmonizer
Players
XSynth

Combsyn

Multidelay

Reverb

Example: old style main patch (Ircam)

OO demo-patch-concert =
F reset
0 EadeEE set 1 Finit 1 I'f_ <= II‘IIt
*;
= init
E test Flélj-EllE' rmidiinfo
normal ¥ | sens de la pédale I/"_
=
. 3 [|start DAC
| Digi 001 Port 1 % | périphérique MIDI :
[.
. dsp start
[+ 01 numera du controler
EF‘edal—ﬁanager j
£ <- pédale regue Iﬂ"‘_ .
g | reset -> play the piece
F reset |
E s Feset
int 1
+ 1
=0 actual Event =0 next Event
|
b oinit
T= rrl"_'. .
FI-EI'tl'I . Panlc ';IEF' 5'|:|:|F|
thispatcher |
= panic

p SCobe ?M-:u:lu l=F layer p preloadage

Key principles of patch design

 Modularity: the patch must be made of reusable components, that can be
instantiated multiple times (eg. granulatori1, granulator2, ...)

 Programmability: each component must be able to be controlled
independently by scripted actions, without requiring explicit interaction with
the user

* Interaction resistivity: each component must not react instantly to user’s
actions but should resist until it is ready to react

Paradox:
Are you saying that a realtime patch must be used without user interaction??

Processor (1/2)

* Divided into processor.algorithm and processor.GUI/

* processor.algorithm implements the DSP parts of each component using
poly~; it communicates with other components via wired messages

» processor.GUI handles the interactions, the scripting, etc.; it communicates
with other components via parametric remote messages (#1-messages)

* A processor Is used in the main patch via the bpatcher object

 Processors can be connected to each others via the routing matrix

Processor (2/2)

processor.GUI

receive~ #1-
processor.int

receive #1-
processor.algorithm
poly~

(presentation)

Example: cross-synth (presentation)

2-XSYNTH

Multiple instances

1-XSYNTH

0.

M

0.

AN

(bpatchers)

Parametric remote messages

Example: cross-synth (GUI)

. inter #1-xsynth_Y

? .

r

| inter #1-xsynth_q
q

inter #1-xsynth_y

RESET

#1-xsynth_gain 0;
#1-xsynth_X 1,
#1-xsynth_x 0;
#1-xsynth_q 0;
#1-xsynth_Y 1,

s¢nd~ #1-xsynth_out 1

#1-xsynth_y 0;
#1-xsynth_noise_gate 0;
#1-xsynth_phi_ratio 1,
#1-xsynth_mod_freq 5;
#1-xsynth_mod_amp 0;

Example: cross-synth (algorithm)

audio1 audio2 X

el

pply~ xéynth _boly_cé"re

Y y gate phase_ratio mod_freq

6 7 9 T 1
vl v v \ 4 v v Hx = XH1 + xH2 + @ sart{H1 * H2) LEYNIH

alphax = Alpha1Y + alpha2y

q
5
\ 4

- mod_amp

.l.

pﬁt~ xsynth_pfft_core

phase_ratio mod_freq mod_amp MODULATION

mod_freq

(can contain several encapsulations)

Scene manager (basic)

Loader Selector Scene

LOAD H H

SCENE

delay 500

sel123456789 10 1 patchbay_scene 1;
~ ~ 1-microphone_gain 0,

1-spectral_freeze denoise 15;

- 1-spectral_freeze_interp 100;

1-spectral_freeze width 32;

u . . 1-spectral_freeze_gain -12;
y 1-microphone_gain 0;
2-spectral_freeze _denoise 0;
2-spectral_freeze _interp 100;
2-spectral_freeze width 8;
2-spectral_freeze_gain 0,

CURRENT

I NEXT R

1-spectral_freeze_freeze bang;

2-spectral_freeze_freeze bang;

p score

Routing matrix

PL1 PL2 PL3 XS1

XS2 MK1

XS1a
XS1b
XS2a
XS2b
recelve~ 1-xsynth_out 1
T

s
,

celve~ 1-player out 1 receive~ 3-player_out 1
? ’
’ ,
57 V4 receive~ 2-xsynth_out 1
receive~ 2-player out 1 o T
s
d receive~ 1-mike_out_1
T
-
L)

- - l
-
” p ,
’, . y :
_
'y T iy <
] '} ’ ? -\ \
’, ’ . :
' ' - p . ‘
] 4 P p - q
' ’ s P W .
’, » o \
- 4 - - ~ » s 'Y
: 2 e’ - ! - r Master gain
. ' o Master .
. ! = e —
- S) |

send~ 1-xsynth_in_1 send~ 2-xsynth_in_1
send~ 1-xsynth_in_2 send~ 2-xsynth_in_2

Full

examples (1/2)

1-PLAYER

1-XSYNTH 2-XSYNTH

2-

r Patchbay_connection

1-xsynth_reset bang;
2-xsynth_reset bang;
1-player_reset bang;
2-player_reset bang;
3-player_reset bang;
Master_gain -76;
Patchbay connection clear;

Next_scene 1;

’
’ -
send~ 1-xsynth_in_1 send-~ 2-xsynth_in_1
send~ 2-xsynth_in_2

send~ 1-xsynth_in_2

Open
ARGy |

PLAYER

Open
A ..

3-PLAYER

Open
A

receive~ 1-xsynth_out_1
‘
’,
’
receive~ 3-player out 1
"
, 4 receive~ 2-xsynth_out 1 \\\‘
: [
eive~ 1-mike_out 1 §
.
>

rec
.

Full examples (1/2)

pluto 400 5000

‘..;""T interp_r pluto

piuto 5000 fl0-
'1-spectral_freeze_denolse 0 5000 “ set 7000

param $1
param_handler

hy

— 200.
1-freeze

freeze! reset

1-micro

1
|

START
HERE!

'1-spectral_freeze_reset bang;
2-spectral_freeze_reset bang;
_ 1-microphone_reset bang;
\ patchbay _reset bang;
m reset_scenes bang;
TOGGLE
A ... - roset soons
/ rreset_scenes
AUDIO —
N ONIOFF) sel 32 13 122 [l
Y B ——
A} LY

CURRENT

