
INTRODUCTION TO
PATCH DESIGN IN MAX

CARMINE-EMANUELE CELLA

CONSERVATORIO G. ROSSINI - PESARO

Why patch design?

• Realtime performances of mixed music (instruments + live electronics)

• Realtime improvisation with live electronics

• Longevity and reproducibility of the electronic score

• Reusability of the implemented algorithms

• At the origin of Max/MSP (from Ircam to Cycling74)

• It has nothing to do with the graphical appearance of the patch

Algorithm design vs patch design

• Algorithm design focuses on the low-level principles of programming

• A well designed algorithm is not always efficient in realtime performances

• Pedagogically, it is easier to focus on algorithm design than patch design

• Patch design is the good way to implement an algorithm

• Patch design refactors a well designed algorithm into an equivalent algorithm
that is meant to be used in realtime

Overview (1/2)

Output

Section

Input

Section

Scene

Manager

Routing

Matrix

Init

Reset

DAC

Processors

(front-end)

Main patch

Overview (2/2)
• Input/output sections: handle the physical audio channels of the patch (eg. microphones,

speakers, spatialiser)

• Scene manager: handles the electronic score (presets of parameters for the whole patch)

• Processors: are the effects and/or the synthesisers; specific parameters must not be
exposed in the main patch

• Routing matrix: handles the connections between the effects, the synthesisers and the
physical audio channels

• Init button: sets the beginning state of the patch, must be used once (eg. Load audio files,
setup ambisonic speakers, …)

• Reset button: neutral scene of the patch (useful during rehearsals)

Example: main patch

Example: old style main patch (Ircam)

Key principles of patch design

• Modularity: the patch must be made of reusable components, that can be
instantiated multiple times (eg. granulator1, granulator2, …)

• Programmability: each component must be able to be controlled
independently by scripted actions, without requiring explicit interaction with
the user

• Interaction resistivity: each component must not react instantly to user’s
actions but should resist until it is ready to react

Paradox:
Are you saying that a realtime patch must be used without user interaction??

Processor (1/2)

• Divided into processor.algorithm and processor.GUI

• processor.algorithm implements the DSP parts of each component using
poly~; it communicates with other components via wired messages

• processor.GUI handles the interactions, the scripting, etc.; it communicates
with other components via parametric remote messages (#1-messages)

• A processor is used in the main patch via the bpatcher object

• Processors can be connected to each others via the routing matrix

Processor (2/2)

poly~

processor.algorithm

processor.GUI

send~ #1-processor.out1

(presentation)

receive~ #1-
processor.in1

receive #1-
processor.param1

Example: cross-synth (presentation)

Multiple instances

(bpatchers)

Example: cross-synth (GUI)

DSP

Parametric remote messages

Example: cross-synth (algorithm)

(can contain several encapsulations)

Scene manager (basic)

Loader Selector Scene

Routing matrix

Full examples (1/2)

Full examples (1/2)

