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INTRO TO NEURAL NETWORKS
FOR MUSIC APPLICATIONS




PROJECTIONS

2.2. Projection. An important application of inner product is to project one vec-
tor over another. The projection of x on y is defined as:

(,y)
(3) ‘Bz(y) — ”7”2 + L

where the ratio between the inner product and the squared norm of x is called
coefficient of projection.

o: KEYPONT: projections compute the simzilarity (covariance) of the
two vectors.

2.3. Reconstruction from projections. A vector can be reconstructed with a
linear combination from its projections on another set of vectors if and only if the
set used is a basis.



ANALYSIS AND SYNTHESIS

3.1. Analysis. The analysis is the representation ¢, of a signal given by the inner
product of it by a basis in a vector space; it is therefore given by the projection

(4) Py = 27(t) * H — <'7;7bk>

{

where by 1s a given basis and ¢ is time.

3.2. Synthesis. The synthesis is the reconstruction of the original signal x by the
summation of the products with the representation ¢, created by the analysis:

(5) x(t) = Z Grbi (1) = Z (2, b )bi(1).
k

k



REPRESENTATIONS

Stability

Invariance

Uniqueness




REPRESENTATIONS

Representations can be considered linear operators that need to be invariant
to sources of unimportant variability, while being able to capture discriminative
information from signals. As such, they must respect four basic properties; being
r a signal and ®x its representation:

discriminability: ®x # Py — x # y:

stability: ||®x — Pyll2 < Cllz — yl|2:

imvariance (to group of transformations G): Vg € G, Pg.x = Pux;
reconstruction: y = ®xr <= 1 = & ly.

Discriminability means that if the representations of two signals are different than
the two signals must be different. Stability means that a small modification of a sig-
nal should be reflected in a small modification in the representation and vice-versa.
Invariance to a group of transformation G, means that if a member of the group
is applied to a signal, than the representation must not change:; reconstruction,
finally, is the possibility to go back to a signal that is equivalent to the original (in
the sense of a group of transformations) from the representation. It is possible to
divide representations in two major categories: prior and learned.



NO LEARNING: FOURIER

4.1. Fourier. The Fourier representation is a specific case of analysis and synthesis,
where the basis is given by a set of complex sinusouids: by = e'27k (where 7 is the
imaginary unit).

The discrete Fourier analysis (DFT) will be therefore:

—12mkt

(6) B(k) =) x(t)e T

and, in the same way, the reconstruction (or inverse Fourier transform, IDFT) is
given by:

12kt

(7 o(t) = 7 S a(k)e ™
k




NO LEARNING: FOURIER
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—12mkt

(6) B(k) =) x(t)e T

and, in the same way, the reconstruction (or inverse Fourier transform, IDFT) is
given by:

12kt

(7 o(t) = 7 S a(k)e ™
k

This can be thought of as a convolution with the Fourier basis



NO LEARNING: WAVELET/SCATTERING TRANSFROM
Definition

@ The scattering transform (by S. Mallat) at scale J is a convolutional
representation made of a cascade of complex wavelet transforms
followed by a modulus non-linearity and averaged by a low-pass filter:

SJCIj — {x*¢J7 with A; =47, 0:},5: < J
:B*w)\l *¢J7

T * x| * Vx| x s}

7
?U/H

Depth
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Scattering transform

Definition
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@ 1t has multi-layer architecture, where higher layers recover the
information lost in previous ones;
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Scattering transform

Definition

@ The scattering transform (by S. Mallat) at scale J is a convolutional
representation made of a cascade of complex wavelet transforms
followed by a modulus non-linearity and averaged by a low-pass filter:

Sjx = {$*¢J, with A; = {7i,0:},75: < J
Q?*Qp)\l *¢J7

T * x| * Vx| x s}

7
<‘;5/|-|

@ 1t has multi-layer architecture, where higher layers recover the
information lost in previous ones;

Depth

@ it is invariant up to J, stable to small diffeomorphisms and unique.
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Scattering transform

The scattering tree

S[@]I = I * (,EEDQJ

Image by J. Bruna and S. Mallat
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Scattering transform

Scattering on images

1st order

coefficients

Image by E. Oyallon
Carmine Cella (CNMAT, UC Berkeley) Scattering transform 5/10



Scattering transform

Multi-variable scattering

Capture complex structures in signals looking at time-frequency coherence:

o , t t log A
@ joint-scattering: ‘|£E*?7D)\|*¢a * ¢ﬁ|

log A

Images by V. Lostanlen
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Scattering transform

Multi-variable scattering

Capture complex structures in signals looking at time-frequency coherence:

o . t t log A
@ joint-scattering: H:E*@DAH%% * ¢ﬁ|

log A

{

. _ ¢ t log\ t
o spiral-scattering: ||z x )| *x 1y * Vg3 * Uy

log A

Images by V. Lostanlen

Carmine Cella (CNMAT, UC Berkeley) Scattering transform

7/10






SUPERVISED LEARNING: MULTI-LAYER PERCEPTRON

5.2. Multi-layer perceptrons. Set of linear transformations followed by non-
linearities (like scattering) in which the projectors are learned with supervision
with backpropagation |...|:

(11) MLP, = p(Wz + b)

where:
e IV is a a linear transformation made of weights found during learning:
e ) is a translation vector:
e is a point-wise application of a non-linearity.
This structure can be repeated in a cascaded structure, creating invariances for
different variables.
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Why MLP is a linear transformation followed by a non-linearity?

Is there a connection between MLP and Fourier?
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FOURIER (RECAP)
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FOURIER (RECAP)
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FOURIER (RECAP)

x ]
Fourier Matrix form
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SINGLE LAYER PERCEPTRON

X1
W1
X1 W2 m '
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SINGLE LAYER PERCEPTRON

X1

Wi
X1 W2
\ i 1.iwax+sz
(wixi)+bias  —Jp f(x)= |
% =1 0,if) Wx+b<°_>.
Xi :
W
X1 z |
Summation
Inputs  Weights and Bias Activation Output

Z r,w; = (T, w)

INNER PRODUCT!



MULTIPLE LAYERS



MULTIPLE LAYERS —



MULTIPLE LAYERS —

Non-linearity ,O(WX)



MULTIPLE LAYERS —_

Non-linearity p(Wx) — |E£E|

LIKE FOURIER BUT WITH A KERNEL
THAT IS LEARNED!



MULTIPLE LAYERS —

i
s / p(W™ ... p(Wp(Wx)))
...REPEATED MANY TIMES
(multiscale)...

Matrix form ng
Non-linearity p(Wx) — |E£E|

LIKE FOURIER BUT WITH A KERNEL
THAT IS LEARNED!



LINEARIZATION: 2D

5.3. Linearization. We can think that the role of projectors and non-linearities
in MLP is to linearize the feature space |[...]. See figures 5 and 6.




LINEARIZATION: 3D
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TRAINING: BACKPROPAGATION

@ Adjust parameters
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TRAINING: BACKPROPAGATION

@ Adjust parameters
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* n 1s the number of data points
* Y; represents observed values
* Y: represents predicted values



TRAINING: BACKPROPAGATION
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Update

Whew = Worg + (T * (error * p'(y)))
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vector similarity
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Scattering Neural networks




SUMMARY

signals can be represented in vector spaces with inner product:
projections compute similarity, reconstruction from projections is possible
with bases:

Fourier: a-priori representation for frequency, invariant to time (indepen-
dent), instable to frequency (dependent variable):

from Fourier to Wavelets: a-priori representation for time-frequency, in-
variant to time, stable to frequency, information is lost (not unique), direct
reconstruction is not possible:

scattering: a-priori representation for time-frequency, invariant to time,
stable to frequency, information is recovered from upper layers, direct re-
construction is not possible, first layer similar to MFCC:

joint scattering: as scattering but able to connect different variables; e.g.
spiral scattering acts on a third (dependent) variable:;

clustering: unsupervised representation based on geometric proximity:
MLP: supervised representation that maximises projectors for the specific
problem, can act on many variables non joinlty but it is difficult to know
what are the variables:



But what can we do with this??



Can we classify sounds?



Musical instrument classification: classical approach

e " T ™ L]

86

87 clfs.append(LogisticRegression(solver="'1bfgs', max_iter=5000, multi_class='auto' ))
88 clfs.append(SVC())

89 clfs.append(KNeighborsClassifier(n_neighbors=5))

90 clfs.append(RandomForestClassifier(n_estimators=10))

01

92 print ("\nRunning classifications...")

93 for classifier in clfs:

04 pipeline = Pipeline( [

95 ('normalizer', StandardScaler()),

06 (‘clf', classifier)

97 1)

98 print('----————"—"mrrir o ")

99 print(str(classifier))

100 print('-—-——"——rerrr——-—- —-—- —- - -, —- . —-.—-. .  — — ")

101 shuffle = KFold (n_splits=5, random_state=5, shuffle=True)
102 scores = cross_val_score (pipeline, X, y, cv=shuffle)
103

104 print("model scores: ", scores)

105 print("average score: ", scores.mean ())

106

107 pipeline.fit (X_train, y_train)

108 ncvscore = pipeline.score(X_test, y_test)

109 print("non cross-validated score: ", ncvscore)

110



Musical instrument classification: deep learning approach (Lostanlen and Cella, 2016)

Deep convolutional networks (ConvNets)

owe their success to two assumptions:

1. locality of correlations, and

2. stationarity of statistics.

Yet, the constant-Q transform (CQT) does not
comply with them over the full hearing range.

What convolutional architectures
for time-frequency representations ?

J

e

(96 x 128) (24 x 30 x 32) (4 x 8 x 32)

CONv.
RelLU

4 pooling

CONV.
i RelLU

pooling

.’Bg[f.kl.kg] .’Bg[f,l.?l.l\f;;]

Dropout of 50% of the activations is applied at the last two layers.
\

(64)

dense
RelLU
—

L4

h

dense

softmax

K

-

O OO0 O 0O

O

\_ ©

piano

violin

dist. guitar
female singer
clarinet

flute

trumpet

tenor sax.

Two convolutional layers and two densely connected layers: a commonly used ConvNet architecture for MIR.
Trained with Adam optimizer, on stochastic cross-entropy, over normalized batches of size 32.




Musical instrument classification: deep learning approach

42 N ) 4 )
Problem 1: Locality of correlations ? Problem 2: Stationarity of statistics ? Solution: improved weight sharing
« Local neighborhoods in frequency do not A
share the same relationship » [Humphrey 2013]. , log-frequency
4 piano N tuba
b
: : - b
We computed the covariance matrix between CQT
coefficients in the RWC dataset of isolated notes. -
Source-filter interpretation:
the source is transposed by pitch shift while time

the overall spectral envelope remains unchanged.

log-frequen )
4 0% 'q i Distance ~1/n, unevenness ~1/n2

At high frequencies, transposed pitches have

We computed pairwise distances in mel-frequency

>

dense cepstral coefficients (MFCC) of isolated notes in similar spectra up to some additive bias.
correlations the RWC dataset. We use 1-d convolutions above 2 kHz.
above 2 kHz The DCT involved in MFCC yields the optimal basis

under the assumption of stationarity.

. The probability of two randomly chosen partials
harmonic all instruments : between 1 and n to be in octave relationship is ~1/n.
correlations clarinet We use spiral convolutios below 2 kHz.
below 2 kHz — . . . e

— Experiments in musical instrument classification
log-frequency > flute| === with MedleyDB [] for tra'ining and
_ —— solosDB [Joder ] for testing.

Isomap embedding [Le Roux 2007] of harmonic PIANG | = —
correlations reveals the pitch helix [Shepard 1965]. t —— MFCC, random forest classifier 38.6
eNnor Sax. | . comm—m—— 2-d ConvNet 30.9
. . & spiral ConvNet 28.
A pItCh helght trumpet - ———— & 1'-)d ConvNet 26.3
1-d scattering [Andén 2014] 32.0
0 .' O violin | [T 2-d scattering [Andén 2015] 22.0
.. ".. o spiral scattering [Lostanlen 2015] 19.9

O @ O intra-cluster distances
®) ‘ o @) == same instrument Hvbridvzin nvolutional | ith multiol
. @ (@) === same instrument and nuance y' rdyzi g_co e '9 a_ RyEhs Wi e
O.. O ') m== same instrument, interpret, and manufacturer weight sharing strategies improves
® ©O mmm same instrument and pitch classification accuracy of ConvNets with respect to
O ° © ff esie picch chif the traditional 2-d architecture.
owever, the state of the artis obtaine
0O Yet, MFCC are affected by realistic pitch shifts H the state of the art is obtained by

Q . . . . o i ) )
O despite being designed to be invariant to a deep scattering network, in which learned

frequency transposition of pure tones. convolutional kernels are replaced by wavelets.
\ N J U Y,




Can we model musical style?



SYTLE IN MUSIC IS NOT EASY TO DEFINE

Preprint from The Structure of Style: Algorithmic Approaches to Understanding Manner and
Meaning, Shlomo Argamon, Kevin Burns, and Shlomo Dubnov (Eds.), Berlin: Springer-Verlag,
2010, pp. 45-38.

Style in Music

Roger B. Dannenberg

Because music 1s not objectively descriptive or representational, the subjective qualities of music
seem to be most important. Style 1s one of the most salient qualities of music, and in fact most
descriptions of music refer to some aspect of musical style. Style in music can refer to historical
periods, composers, performers, sonic texture, emotion, and genre. In recent years, many aspects of
music style have been studied from the standpoint of automation: How can musical style be
recognized and synthesized? An introduction to musical style describes ways in which style 1s
characterized by composers and music theorists. Examples are then given where musical style 1s

the focal point for computer models of music analysis and music generation.



ADVANCED HYBRIDISATION (UNSUPERVISED LEARNING)

John Cage...



ADVANCED HYBRIDISATION (UNSUPERVISED LEARNING)

John Cage...

..and \_ Beach boys??
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ADVANCED HYBRIDISATION (UNSUPERVISED LEARNING)

..and Beach boys??
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..and
contemporary music?




Can we generate new music (samples)?



END-TO-END MUSIC CREATION

La fabriqgue des monstres

https://www.danieleghisi.com/works/la-fabrique-des-monstres/



THANK YOU!

Suggested exercise: try to implement your own network for creative applications!



