
Vuza: a functional language for creative applications

Carmine-Emanuele Cella
Casa de Velázquez - Ircam

carmine-emanuele.cella@[casadevelazquez.org, ircam.fr]

ABSTRACT

This short paper will present Vuza, a new functional lan-
guage for computer music and creative coding. The key-
point of the language is to bring the expressivity and the
flexiblity of functional programming to digital art and com-
puter music and make possible to embed such power in
host applications. Vuza is a general purpose language with
specific extensions for sound analysis and synthesis in real-
time, computer assisted composition and GUI (graphical
user interface) creation.

1. INTRODUCTION

During the history of computer music and, more generally,
of creative coding 1 many excellent languages and envi-
ronments have been developed and have become the center
of small or large communities that used their power to cre-
ate and innovate. Any of these languages adopts a particu-
lar point of view on the domain it processes, thus adhering
to a specific mixture among the programming paradigms.
While it is beyond the scope of this paper to give an com-
plete discussion of the topic (see [8] for more information)
we would like to name, in any particular order, a few of
them 2 :

• Csound: originally written at MIT by Barry Vercoe,
from his Music 11 language, is a must for audio pro-
gramming. It is a structured language that concep-
tually separates the creation of algorithms to their
temporal dislocation.

• SuperCollider: is an environment and language cre-
ated by James McCarthy for real-time audio process-
ing and automated composition. It uses a mixture of
functional and object-oriented programming and it
has proved to be an excellent platform for live cod-
ing 3 .

1 With this expression we mean the use of computer languages for
artistic applications such as installations, interactive audio and video per-
formances, computer vision projects, and so on.

2 The list provided here is not meant to be exhaustive but only to give
an idea on the complexity and on the size of the field.

3 Live coding is a practice centered upon the use of improvised pro-
gramming for computer music, algorithmic composition and other cre-
ative performances.

Copyright: c©2014 Carmine-Emanuele Cella et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

• Nyquist: is a sound synthesis and composition lan-
guage with a double programming paradigm: a Lisp-
like syntax as well as an imperative language syntax
(SAL); it has been created by Roger Dannenberg at
Carnegie Mellon University.

• Common Lisp Music (CLM): is a huge music syn-
thesis and signal processing environment, belonging
to the Music V family of languages, created by Bill
Schottstaedt at CCRMA.

• Processing: is a programming language and envi-
ronment (IDE) for new media and visual art; it was
initiated in 2001 by Casey Reas and Benjamin Fry at
the MIT Media Lab.

• Max/MSP - PureData: are two outstanding exam-
ples of visual programming languages. Originally
created by Miller Puckette for interactive computer
music, they are the de facto standard today for real-
time performances.

Each one of these environments gathered around it artists,
researchers and enthusiasts thus becoming a favorite medium
for innovation and discovery. Many authors, in literature,
have written papers on particular aspects of the field dis-
cussing practical and aesthetic issues and elaborating on
the relation between technical development and poetic in-
spiration (see, among others, [6]).

The project documented in this paper aims at giving some
contributions to such a rich and proficient field.

The following sections will introduce and discuss Vuza 4 ,
a new general purpose functional interpreted language specif-
ically designed for computer music and creative coding.
The source code, related examples and some documenta-
tion on the project can be found on the website
http://www.vuza.org. After a short presentation

of the basics of the language, some example applications
will be shown.

2. LANGUAGE DESIGN

Designing a new language is not an easy task: it involves
different considerations and specific needs, from imple-
mentative to theoretical. When we started designing Vuza,
however, we knew that we wanted it to have a functional
nature and other important features that will be discussed
below.

4 The language is named after the rumanian mathematician Dan Tudor
Vuza, for his important contributions in the field of mathematical the-
ory of music. See for example http://imar.ro/organization/
people/CVs/Vuza_Dan_CV.pdf.

mailto:carmine-emanuele.cella@ircam.fr
http://creativecommons.org/licenses/by/3.0/
http://www.vuza.org
http://imar.ro/organization/people/CVs/Vuza_Dan_CV.pdf
http://imar.ro/organization/people/CVs/Vuza_Dan_CV.pdf

2.1 Functional paradigm

Functional programming is a special paradigm that treats
computation as the evaluation of mathematical functions.
It has its roots in the theoretical research done between the
two World Wars by Alonzo Church [1] and in the work
done by John McCarthy at MIT during the fifties [2]. The
most famous example of such programming paradigm is
the Lisp-family of languages and its simplified and mini-
malistic dialect Scheme [4]; both languages are standard-
ized and the latter is described by the well known RxRS
specifications 5 .

While Lisp has been around since a long time (its first
more complete implementation dates back to the sixties
[3]) it had from the very beginning incredibly expressive
features that are only partially matched by more modern
languages [5]:

• function type: functions are, in Lisp, first-class ob-
jects and can be stored in variables, passed by and
have a literal representation;

• recursion: while well defined mathematically, recur-
sion was not supported before Lisp and only itera-
tion was available;

• garbage-collection: in Lisp, the programmer does
not need to think about memory management and
can focus more on high-level problems;

• composition of expression: there is no distinction,
in the language, between statements and expressions
and the programs are just trees of mathematical ex-
pressions returning values;

• identity between code and data: Lisp does not dif-
ferentiate between programming code and user data,
thus enabling exceptional reflection capabilities that
exploit in the famous macro system, a facility to cre-
ate code that generates code.

Over time, the various programming languages have
gradually evolved toward the expressive power of Lisp:
some features are now widespread in the mainstream, but
some (such as identity between code and data) are still
unique to the language invented by McCarthy just after the
second World War (for more information see
http://paulgraham.com/diff.html).
During the last thirty years, many advocates of Lisp de-

fended the cause providing amazing examples of its power
and consequently generating vivid debates on the topic.

Deciding whether or not Lisp the key to success is out
of the scope of this paper; it is sure, however, that func-
tional programming has a great expressive power that lets
the user to concentrate more on the problem to be solved
than on implementation details (see for example http:
//paulgraham.com/avg.html).

5 For more information see http://trac.sacrideo.us/wg/.

2.2 Other important features

Other than being functional, Vuza has by design several
important features:

• small size: the core part of the language is roughly
two thousands line of code, half of which written in
C++ and the other half in Vuza itself (this also makes
it very portable and maintainable);

• embdeddable: the whole interpreter consists of a
couple of header files and it is very easy to embed
it in host applications written in C++ or ObjectiveC
(see section 2.5);

• extensible: Vuza is extensible by creating libraries
with the language itself or by using C/C++ to create
functors, a collection of compiled functions that can
be used as built-in operators from the interpreter (see
section 2.5);

• audio-oriented libraries: Vuza provides a powerful
library called soundmath that supports specific func-
tionalities for sound analysis and synthesis (such as
FFT transform, digital filtering, oscillators and gen-
erators, features computation and clustering, phase
vocoding, granular synthesis, etc.); moreover Vuza
implements a binding to the Csound language for
real-time audio processing (more on this in section
2.4);

• GUI creation: it is very easy to create GUIs thanks
to the binding to the FLTK library, that provides
common controls such as buttons, sliders, windows
and so on (see section 3.3).

In a nutshell, Vuza is an interpreted programming lan-
guage of the Scheme family that implements part of the
R4RS standard 6 but sports a Lisp-like macro system. It
is lexically-scoped, dinamically-typed, fully tail-recursive,
with functions as first-class objects and a mark-and-sweep
garbage collection tailored for speed. As a key-point, it im-
plements several extensions suitable for computer music
and general creative coding. The major differences with
the R4RS Scheme standard are summarized below:

• no support for continuations, a special language fea-
ture for advanced flow control;

• simplified data types: there are no chars and all num-
bers are reals (no complex, integers, etc.);

• Lisp-like macro-system based on quasiquotations;

• for implementative reasons, vectors are just a wrap-
per on lists, thus behaving in a slightly different
manner;

• several extensions added to improve C++ and oper-
ating system integration.

The following subsections will provide examples of the
language and will discuss specific libraries and bindings.

6 See http://people.csail.mit.edu/jaffer/r4rs_
toc.html.

http://paulgraham.com/diff.html
http://paulgraham.com/avg.html
http://paulgraham.com/avg.html
http://trac.sacrideo.us/wg/
http://people.csail.mit.edu/jaffer/r4rs_toc.html
http://people.csail.mit.edu/jaffer/r4rs_toc.html

2.3 Simple examples

As all the functional languages that have roots in Lisp, also
Vuza uses a prefix notation for its expressions. For exam-
ple, a simple arithmetic expression can be represented as
follow:

(+ 1 2 (- 3 5))

While this can be confusing at the beginning, it gives the
user a great flexibility; it possible, for example, to compose
the same expression in several ways:

(if dummy (= x 1) (= x 2))
(= x (if dummy 1 2))

The expressions above represent a conditional test on the
variable named dummy and a subsequent assignment to the
variable x.

In Vuza, it is possible to define new functions using the
powerful λ-notation: λ-functions are anonymous blocks of
code that can be applied on a set of parameters, stored in
variables or simply passed by. The code

(define twice (lambda (x) (+ x x)))

defines a new function called twice that, when applied to
the parameter x, returns its double by summing it twice.

Since any function can be also passed as a parameter to
another function, it is possible to create higher-order ap-
plication easily. The code

(map (lambda (x) (+ x 2)) ’(1 2 3 4))

will add 2 to any of the numbers in the given list by map-
ping an anonymous λ-function to the subsequent argu-
ments of the expression.

In Vuza, recursion is generally preferred to iteration (due
to its possibility to be fully tail-recursive). The following
code shows the definition of a function to compute a facto-
rial number recursively:

(define fac (lambda (n)
(if (= n 0) 1 (* n (fac (- n 1))))))

Thanks to the powerful built-in macro-system, finally, it
is possible to create advanced behaviors but they will be
not be examined here. For a more complete set of pro-
gramming examples see http://www.vuza.org.

2.4 The soundmath library

One of the main points of Vuza is the possibility to ma-
nipulate sounds and more musical entities. This is made
possible by the soundmath library, a special extension of
the language written in C++ and Vuza that provide several
advanced functionalities. The following list is only a par-
tial description of the implemented features:

• frequency-domain processing: FFT transform, fast
block-convolution, phase-vocoding with envelope
preservation;

• time-domain processing: many FIR and IIR filters,
variable-state systems, interpolated delays, special
effects;

• synthesis: digital oscillators, spectral synthesis,
granular synthesis, physical modeling;

• analysis: pitch detection, low-level features (spec-
tral centroid, spread, skewness, curtosis, MFCC,
zero-crossing . . .), envelope following and onsets
detection;

• spatial processing: convolution and traditional re-
verberation, ambisonic encoding and decoding;

• feature clustering and transformations: GMM, K-
means, PCA.

• pitch-class analysis: set transformation, interval
vector, trichordal mosaics, hexachordal combinato-
riality.

The soundmath library also provides the tools to perform
soundtypes analysis and synthesis, a special framework
created by the author to represent and manipulate sounds
at a quasi symbolic level (see [9] and [10]).

The following section will present the two major bindings
actually implemented, for both real-time audio and GUI
creation. Other bindings are currently planned; see section
4 for more information.

2.5 C/C++ interoperability

An important feature of the Vuza language is the easy in-
teroperability with C/C++. To use the whole interpreter in
a host application in C++, it will be sufficient to include a
special header and to create a couple of objects:

#include "vuza.h"
vuza::Interpreter* interpreter =
new vuza::Interpreter ();

vuza::Sexpr* root = interpreter->run (
*inputdata, lineno, ctx, unparsed);

vuza::display (root, cout) << std::endl;

In the same way, extending the language using C++ is
very easy. The following examples are taken from the
FLTK binding and show that to bring a C/C++ function
into the language is sufficient to wrap it into a predefined
signature and expose it using the special operators import
and make-procedure. The C/C++ code for importing a sim-
ple function is shown below:

extern "C" Sexpr* fn_fl_run (
Sexpr* params, Environment* env) {
Fl::lock ();
int r = Fl::run ();
Fl::unlock ();
return new Number (r);

}

The Vuza counterpart for this is the following:
(begin
(define fltklib (import "fltklib.so"))
(define fl-run (make-procedure
fltklib "fn_fl_run" 0))

)

With the described techniques, we tried to simplify as
much as possible the interaction between the two lan-
guages in order to augment and facilitate their integration.

http://www.vuza.org

3. BINDINGS

Vuza implements two bindings to well known and largely
used C++ environments: Csound and FLTK . The former
provides access to real-time audio processing while the lat-
ter lets the user to create custom GUI; both libraries are
portable and work on the majority of existing platforms.

While a complete discussion of this feature of the lan-
guage is beyond the scope of this paper, a short description
of the two bindings (called respectively vuzcsnd and vuztk)
will be provided below.

3.1 Callback-lambdas

All the bindings in Vuza are possible through the concept
of callback-lambda. Callback-lambdas are blocks of Vuza
code that can be associated to any particular event; for ex-
ample it is possible to create a callback that responds to an
action done from the user on the graphical interface or to a
time event raised by the system.

3.2 Csound and real-time

The Csound language (http://www.csounds.com)
is a well known environment for audio generation that pro-
videS, among other things, common facilities for real-time
processing across several platforms. The

The following code shows a short example where a sim-
ple Csound script is integrated into Vuza code as string and
then rendered in real-time:

(begin
(load "vuzcsnd.scm")

(csound-initialize CSOUNDINIT_NO_ATEXIT)

(define cs (csound-create))

(define orc "sr=44100\nksmps=32\nnchnls=2
\n0dbfs=1\n\ninstr 1\naout vco2 0.5, 440
\nouts aout, aout\nendin")
(define sco "i1 0 1")

(csound-send cs ’set-option "-odac")

(csound-send cs ’compile-orc orc)
(csound-send cs ’read-score sco)
(csound-send cs ’start)
(csound-send cs ’perform)
(csound-destroy cs)

)

Other then the approach proposed above, the binding also
provides a multi-threaded mechanism for audio process-
ing with several ways for accessing internal variables of
Csound.

3.3 FLTK and user interfaces

The Fast, Light Toolkit (FLTK, http://www.fltk.
org/index.php) is a cross-platform graphical user in-
terface library originally developed by Bill Spitzak, suit-
able for general UI programming. The library has a very
sleek programming API and is very fast. The following
code shows the implementation in Vuza of a simple exam-
ple to create a window on the screen:

(begin
(load "vuztk.scm")

(define win (fl-make-widget

’window 0 0 340 180 "FLTK"))

(define box (fl-make-widget
’box 20 40 300 100 "Hello, World!"))

(fl-send box ’box FL_UP_BOX)
(fl-send box ’labelfont (+ FL_BOLD FL_ITALIC))
(fl-send box ’labelsize 36)
(fl-send box ’labeltype FL_SHADOW_LABEL)

(fl-send win ’end)
(fl-send win ’show)

(fl-run)
)

The resulting window is depicted in figure 1; the original
code in C++, taken from the FLTK examples, is shown
below:

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Box.H>

int main(int argc, char **argv) {
Fl_Window *window = new Fl_Window(340,180);
Fl_Box *box = new Fl_Box (20,
40,300,100,"Hello, World!");

box->box(FL_UP_BOX);
box->labelfont(FL_BOLD+FL_ITALIC);
box->labelsize(36);
box->labeltype(FL_SHADOW_LABEL);

window->end();
window->show(argc, argv);

return Fl::run();
}

The two examples are very similar, showing that it is very
easy to port to Vuza some code written in C++ that uses the
FLTK library.

The following example, finally, shows how to create a
callback-lambda that reacts to a user action; when the user
will press a button in the GUI, the program will print a
string on the screen:

(begin
(load "vuztk.scm")

(define window (fl-make-widget
’window 0 0 395 180 "FLTK"))

(define slider1 (fl-make-widget
’hor-value-slider 5 5 380 30 "Sl1"))

(define slider2 (fl-make-widget
’hor-value-slider 5 65 380 30 "Sl2"))

(define slider3 (fl-make-widget
’hor-fill-slider 5 125 380 30
"(Sl3 - connected to Sl1)"))

(fl-send slider3 ’set_output)

(define (cback1 caller)
(define v (fl-send caller ’value))
(display "Sl1 value = ") (display v)

(newline)
(fl-send slider3 ’value! v))

(define (cback2 caller)
(define v (fl-send caller ’value))
(display "Sl2 value = ") (display v)

(newline))

(fl-send slider1 ’callback cback1)
(fl-send slider2 ’callback cback2)
(fl-send slider3 ’color 127)

(fl-send window ’end)
(fl-send window ’show)

(fl-run)
)

http://www.csounds.com
http://www.fltk.org/index.php
http://www.fltk.org/index.php

The callback-lambda is implemented, in the previous ex-
ample, as a λ-function and is passed to the operator fl-
callback as a parameter.

4. CONCLUSIONS

The Vuza project is still in an early stage; however, the
language is already pretty powerful and usable. The con-
tinuation of the development will focus on the following
areas:

• improve R4RS compatibility: while Vuza is pretty
compatible with the standard R4RS of the Scheme
language, there are still some incompatibilities that
we would like to address;

• complete current bindings: not all functions from
FLTK and Csound are exported into Vuza now; we
want to complete the implementation;

• add new bindings for creative coding: we think
that adding a binding to libraries for creative cod-
ing could increase Vuza scope; for this reason we
would like to support to the OpenFrameworks li-
brary (http://www.openframeworks.cc/)
and we would like to provide some integration with
the Max/MSP environment.

Creating a new programming language means, ulti-
mately, giving a new perspective on reality [7]. We
strongly believe that this is a really important activity, es-
pecially in the present moment where all is evolving very
fast.

Acknowledgments

We would like to thank Anthony Hay 7 and Leo Uino 8 for
their useful suggestions and comments regarding the inter-
nal implementation of Vuza. This language will be used
during a research project at Ircam in Paris, from october
2014; for this reason we would like to thank Arshia Cont
for making this possibility concrete.

Figure 1. The Hello world example.

7 See http://howtowriteaprogram.blogspot.com.es/
2010/11/lisp-interpreter-in-90-lines-of-c.html.

8 See http://www.lwh.jp/lisp/.

5. REFERENCES

[1] Church, Alonzo, The Calculi of Lambda Conversion,
1941, Princeton University Press.

[2] McCarthy, John, Recursive Functions of Symbolic Ex-
pressions and Their Computation by Machine, Part I,
Commun. ACM, April 1960, pages 184–195, ACM,
New York, NY, USA.

[3] McCarthy, John, LISP 1.5 Programmer’s Manual,
1962, The MIT Press.

[4] Hal Abelson, Jerry Sussman and Julie Sussman, Struc-
ture and Interpretation of Computer Programs, MIT
Press, 1984, ISBN 0262010771.

[5] Graham, Paul, On Lisp, Prentice Hall, 1993, 432 pages,
ISBN 0130305529.

[6] Bernardini Nicola and Rocchesso Davide, Making
sounds with numbers: a tutorial on music software
dedicated to digital audio, Proceedings of the Confer-
ence on Digital Audio Effects (DAFX-98), pages 192–
201, Barcelona / Spain, November 1998.

[7] Scaletti, Carla, Computer Music Languages, Kyma,
and the Future, Comput. Music Journal, Winter 2002,
pages 69–82, MIT Press, Cambridge, MA, USA.

[8] Ge, Wang, A History of Programming and Music,
Cambridge Companion to Electronic Music, 2008,
Cambridge University Press.

[9] Cella, Carmine-Emanuele, Sound-types: a new frame-
work for symbolic sound analysis and synthesis, ICMC
2011, Huddersfield, United Kingdom.

[10] Cella, Carmine-Emanuele and Burred Juan José, Ad-
vanced Sound Hybridizations by Means of the Theory
of Sound-Types, Proc. International Computer Music
Conference (ICMC), Perth, Australia, August 2013.

http://www.openframeworks.cc/
http://howtowriteaprogram.blogspot.com.es/2010/11/lisp-interpreter-in-90-lines-of-c.html
http://howtowriteaprogram.blogspot.com.es/2010/11/lisp-interpreter-in-90-lines-of-c.html
http://www.lwh.jp/lisp/

	 1. Introduction
	 2. Language Design
	2.1 Functional paradigm
	2.2 Other important features
	2.3 Simple examples
	2.4 The soundmath library
	2.5 C/C++ interoperability

	 3. Bindings
	3.1 Callback-lambdas
	3.2 Csound and real-time
	3.3 FLTK and user interfaces

	 4. Conclusions
	 5. References

