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Abstract

There is a strong link between the short-time Fourier transform
(STFT) and the theory of sound-types. The purpose of this document
is to investigate such a link defining a new kind of transform called
the sound-types transform (STT).

1 The theory of sound-types

1.1 A short recall

The theory of sound-types is a framework for sound analysis and syn-
thesis designed to represent and manipulate signals at a quasi-symbolic
level [1], [2]. The basic idea is to describe sounds by means of classes
of equivalence and probabilities. Conceptually, the analysis is imple-
mented with the following steps:

1. atomize: divide a sound in small overlapping chunks called
atoms (this can be done by windowing or by using more complex
techniques such as atomic decomposition);

2. make classes: compute a set of low-level features for each atom
and project it onto a feature-space; apply any kind of clustering
algorithm (such as GMM) to find the principal clusters of atoms
in the space;
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3. compute probabilities: apply any kind of sequential analysis
(such as HMM) to estimate the probabilities that a cluster is
followed by another cluster in the original signal.

While most of the details are not explicited in the description
above, the core of the idea is sketched out. Following sections will
give a mathematical formulation of the theory, assuming that the at-
omization is done simply by windowing the original signal. Moreover,
probabilities will not be taken into consideration here since they only
act in subsequent stages of the theory.

1.2 The sound-types transform

Given a signal
N

~x of length N -samples and a window
n

~h of length n-
samples, it is possible to define an atom as a windowed chunk of the
signal of length n-samples (the starting position of the chunk is not
indicated here):

n

~a=
n

~h ·
n

~x (1)

where the operator · is a multiplication element-by-element. Using
an adequate hop-size t during the analysis stage (for example t ≤ n/4),

it is possible to reconstruct a perfect1 version
N

~x′ of the original signal
with a sum of atoms as a function of time2:

N

~x′=
N/t∑
i=0

n

~ai·t (2)

where N/t is the total number of atoms present in the signal
N

~x.
It is possible, after the computation of a set of low-level features on
each atom of

n

~ai, to define a sound-cluster as a set of atoms that lie
in a defined area of the feature-space (ie. that share a similar set of
features):

kr
~cr= {

n

~ar,1, . . . ,
n

~ar,kr}. (3)

1As in STFT, the reconstruction can be perfect only under special conditions (not
detailed here) deriving from the type of window used and from the overlapping factor.

2The positions in time of the blocks of n-samples are given by an index i that counts
the number of hops (ie. i = 4 =⇒ 4 · t).
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The content of
kr
~cr is given by a statistical analysis applied on the

feature-space that decides the position of each sound-cluster and its
belonging atoms.

A modelMN
~x

of the signal
N

~x is the defined as the set of the clusters
discovered on it:

MN
~x

= {
k1

~c1, . . . ,
kr
~cr}. (4)

The cardinality |MN
~x
| of the model is also called the abstraction

level of the analisys; since the number atoms is N/t it is evident
that 1 ≤ |MN

~x
| ≤ N/t with higher abstraction being 1 and lower

abstraction being N/t.
Each sound-cluster in the feature-space has an associate sound-

type
n

~τr in the signal-space, defined as the weighted sum of all the

atoms in the sound-cluster where the weights
kr
~ωr are the distances

(any kind of Bregman’s divergences) of each atom to the center of the
cluster:

n

~τr=
kr∑

j=1

n

~ar,j ·ωr,j (5)

with ωr,j ∈
kr
~ωr. The whole set of sound-types in the signal

N

~x is
called dictionary and is the equivalent, in the signal-space, of the
model in the feature-space:

DN
~x

= {
n

~τ1, . . . ,
n

~τ r}. (6)

The creation of a sound-type from a sound-cluster is also called

collapsing and can be indicated with the symbol 〈
kr
~cr〉 =

n

~τr: this oper-
ation represents an interesting connection between the feature-space
and the signal-space that leads to the equivalence 〈MN

~x
〉 = DN

~x
.

It is possible to define a function Ψ that maps an atom to its
corresponding sound-type as:

Ψ n
~ai

:
n

~ai→ 〈
kr
~cr〉. (7)
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For a complete decomposition of the signal, it is also useful to
define a function Θ that returns the original time position of each
atom:

Θ n
~ai

:
n

~ai→ i. (8)

It is now possible to define the sound-types decomposition
N

~x′′

of a signal by replacing each atom of equation 2 with the corresponding
sound-type defined throught Ψ, in the right time position given by Θ:

N

~x′′=
N/t∑
i=0

n

~τr,p (9)

where p = Θ n
~ai

. Finally, it is possible to define a function of time

and frequency by multiplying the sound-types in a given dictionary
with complex sinusoids:

N

~Φn
~k
=

N/t∑
i=0

n

~τr,p ·e−j· 2·π
n
·
n
~k (10)

where
n

~k= {f1, . . . , fn } is a vector of frequencies. Equation 10
is called the forward sound-types transform (STT); the inverse
transform can recreate the sound-types decomposition and is given
by:

N

~x′′=
1
n

N/t∑
i=0

n

~Φ
i·t,

n
~k
·ej·

2·π
n
·
n
~k. (11)

As the next section will show, equation 10 is connected to STFT.

2 STT and STFT

The usual way to mathematically define the discrete short-time Fourier

transform
N

~Xn
~k

of a signal
N

~x of length N -samples taken n at a time while

hopping by t-samples, is a function of both time and frequency:
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N

~Xn
~k
=

N/t∑
i=0

n

~h·
n

~xi·t ·e−j· 2·π
n
·
n
~k (12)

where
n

~h is a window of length n-samples [3] and
n

~k is as above. A
general resynthesis equation is then given by:

N

~x=
1
n

N/t∑
i=0

n

~X
i·t,

n
~k
·ej·

2·π
n
·
n
~k. (13)

Clearly, equations 10 and 12 have a strong resemblance. As ob-
served in the previous section, the abstraction level of a model can
be at most equal to the number of atoms (N/t) in the original signal.
The extreme case for |M| = N/t is interesting: for that abstraction
level, each sound-cluster is a singleton made of a single atom and
consequently each sound-type reduces to that single atom scaled in
amplitude:

|M| = N/t =⇒
1

~cr= {
n

~a1} =⇒
n

~τr=
n

~ar ·ωr,1. (14)

For equation 1, an atom is defined simply a windowed chunk of
the original signal. Not considering the amplitude scaling factor, this
also makes the sound-types decomposition ~x′′ equivalent to the simple
decomposition ~x′, leading to the important consequence that STT is
a generalization of STFT:

n

~τr=
n

~ar=
n

~h ·
n

~x =⇒
N/t∑
i=0

n

~τr,p ·e−j· 2·π
n
·
n
~k =

N/t∑
i=0

n

~h·
n

~xi·t ·e−j· 2·π
n
·
n
~k (15)

with p defined as above. This property also holds for the inverse
transform case but the prove will not be given here. The abstraction
level of a model is directly connected to the goodness of the representa-
tion: the higher the abstraction (closer to 1) the more compact the rep-
resentation. On the contrary, the quality of the synthesis given by the
inverse transform degrades with high abstractions and increases with
low abstractions becoming a perfect reconstruction for |M| = N/t as
proved above.
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3 Conclusions

Previous sections showed how the sound-types transform is a general
case of the short-time Fourier transform. The abstraction level of
this transform controls the compactness of the representation, making
possible new operations on signals such as selective trasformations on
sound-types.
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