ESTIMATING UNOBSERVED AUDIO FEATURES FOR TARGET-BASED
ORCHESTRATION

Jon Gillick!

Carmine-Emanuele Cella®

David Bamman'

1School of Information, University of California, Berkeley
2CNMAT, University of California, Berkeley

jongillick@berkeley.edu, carmine.cella@berkeley.edu, dbamman@berkeley.edu

ABSTRACT

Target-based assisted orchestration can be thought of as the
process of searching for optimal combinations of sounds to
match a target sound, given a database of samples, a sim-
ilarity metric, and a set of constraints. A typical solution
to this problem is a proposed orchestral score where can-
didates are ranked by similarity in some feature space be-
tween the target sound and the mixture of audio samples
in the database corresponding to the notes in the score; in
the orchestral setting, valid scores may contain dozens of
instruments sounding simultaneously.

Generally, target-based assisted orchestration systems
consist of a combinatorial optimization algorithm and a
constraint solver that are jointly optimized to find valid
solutions. A key step in the optimization involves gener-
ating a large number of combinations of sounds from the
database and then comparing the features of each mixture
of sounds with the target sound. Because of the high com-
putational cost required to synthesize a new audio file and
then compute features for every combination of sounds, in
practice, existing systems instead estimate the features of
each new mixture using precomputed features of the indi-
vidual source files making up the combination. Currently,
state-of-the-art systems use a simple linear combination to
make these predictions, even if the features in use are not
themselves linear.

In this work, we explore neural models for estimating
the features of a mixture of sounds from the features of
the component sounds, finding that standard features can
be estimated with accuracy significantly better than that of
the methods currently used in assisted orchestration sys-
tems. We present quantitative comparisons and discuss the
implications of our findings for target-based orchestration
problems.

© Jon Gillick , Carmine-Emanuele Cella, David Bamman.

Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Jon Gillick , Carmine-Emanuele Cella,
David Bamman. “Estimating Unobserved Audio Features for Target-
Based Orchestration”, 20th International Society for Music Information
Retrieval Conference, Delft, The Netherlands, 2019.

1. INTRODUCTION

In many music information retrieval and signal processing
contexts, we are required to reason about signals that are
themselves the sum of multiple sources. Whether the sum-
ming comes from instruments in a multi-track recording,
voices in a group conversation, or simply from noise in the
signal, we generally need to consider the full set of sources
that make up an audio signal.

Much work in MIR deals with pulling apart the sources
in a signal, either in the most straightforward sense via
source separation [3,4], or through any of a number of clas-
sification tasks such as tagging [11,31], instrument recog-
nition [14, 18], or automatic transcription [16,26]. A sep-
arate body of work deals with the inverse problem, that
of putting sources together: work in applications like as-
sisted orchestration [8] and automatic mixing [13,25] aims
to guide people through the task of combining signals to-
gether with the help of a machine in the loop.

In the cases of both separation and combination, tasks
can be solved presumably because the source components
and the summed signal are sufficiently correlated; the more
correlated a source is with the mixture, the easier it is to
identify, and as more signals are summed together, cor-
relations between the combination and any single source
tend to diminish. In a computational setting, these corre-
lations are of course measured through a set of features of
the signals, whether they be hand-engineered features like
FFT and MFCC, or modern features learned by neural net-
works.

There are some cases, however, in which we can ob-
serve the source signals of a mixture, but it is impractical
or impossible to actually compute the features of the signal
in question; these are the cases that we investigate in this
work. Broadly speaking, there are two primary settings in
which we may be unable to observe the features of audio
signals:

1. We do not have access to the signals.

2. Computing the features for all relevant signals is
computationally expensive.

The first setting is commonly encountered in MIR, in
which, as with many fields centered around media that may
be under copyright or other protections, it is quite common

for researchers to have access to pre-computed features
but not to raw data itself. For example, the audio files of
the million songs that comprise the Million Song Dataset
[5], which serves as a benchmark for many common MIR
tasks, cannot be legally distributed. Instead the data con-
tains common audio features like MFCC, chroma, note on-
sets, and spectral centroids. ! Though this dataset and oth-
ers like it are attractive because of their size and scope,
they have been of limited use as source material for con-
structing additional audio mixtures. As semi-supervised
and self-supervised approaches to machine learning have
become more competitive with fully supervised systems,
large datasets even of weakly labeled source material are
becoming more useful for research in areas like source sep-
aration [15,24]; estimating the features of mixtures might
be one path towards making use of this data in new con-
texts.

The second setting in which we cannot observe audio
features, which is the focus of this work, is the case where
the computational cost of calculating an exponential num-
ber of audio mixtures is prohibitively high. This computa-
tional bottleneck often arises in the aforementioned body
of work that attempts to automatically combine signals to-
gether during the course of tasks like target-based orches-
tration. In this context, learning algorithms need to ex-
plore a combinatorial space of potential solution sets, mak-
ing it infeasible to compute the real features of all possi-
ble mixtures of signals. Moreover, methods for narrowing
down this set of possible solutions, such as reinforcement
learning algorithms, are generally iterative, requiring on-
line evaluation of a reward function before the next set of
candidates can be explored. Because these methods both
have a large solution space and need to be evaluated iter-
atively, features must be computed on the fly, making fast
feature computation, or accurate estimation, a necessity.

In this work, we take steps to explore the potential of
machine learning models for predicting audio features of
a mixture of sounds that we are unable to observe, fo-
cusing on the task of target-based assisted orchestration
[2, 6,8]. Concretely, we consider models of the follow-
ing form: given a feature function f and M individual
signals S1,..., Sy, we learn mappings from input fea-
tures f(S1),..., f(Sa) to the true feature of the mixture
f(Sl + ... +SM)~

In experiments, we examine one standard feature that
is known to typically behave linearly when summed (FFT
magnitude spectra) and one feature that is less well suited
to linear approximation (MFFC coefficients), investigate
the ability of different models to predict each feature across
a varying number of mixtures ranging from 2 notes to 30,
and discuss the implications of our findings for target-
based assisted orchestration as well as for the broader
range of scenarios in which real audio features cannot be
observed.

Code to reproduce our results can be found
at https://github.com/Jjrgillick/

! The full list of fields can be accessed here: https://labrosa.
ee.columbia.edu/millionsong/pages/field-1list

audio-feature-forecasting.

2. TARGET-BASED ASSISTED ORCHESTRATION

Musical orchestration, and in many cases, music produc-
tion, consists largely of choosing combinations of sounds,
instruments, and timbres that support the narrative of a
piece of music. Strong orchestration can bring a compo-
sition to life by emphasizing, clarifying, or perhaps ques-
tioning the elements of the music, and through this process,
orchestration can often be a difference-maker to critical or
commercial success [20,21].

Different musical styles and composition environments
have different constraints (for example, scores for live per-
formance should only require the sounds of the instruments
in the group, whereas the sounds available for use on a
recording are only limited by their stylistic relevance), but
fundamentally, finding the right set of sounds is important
regardless of the context. For composers and producers,
employing MIR systems during the orchestration process
holds the potential to help spark inspiration, solve chal-
lenging problems, or save time.

Though the orchestral setting has been explored exten-
sively in previous work, assisted orchestration methods
hold the potential for application in other styles. For exam-
ple, layering drum samples is common practice in music
production, and MIR-based tools for drum sample search
are beginning to make their way into professional toolk-
its2 ; existing methods for query-based drum sample re-
trieval [23] could be extended to consider mixtures of drum
samples.

3. RELATED WORK

Existing systems for target-based assisted orchestra-
tion compute spectral similarities using standard spec-
tral features [8] or perceptual descriptors [2], along with
evolution-based methods for exploring the solution space.

Most relevant to our experimental setting is the im-
plementation of the publicly available state-of-the art Or-
chidea system [10], which is based in part on a study con-
ducted in [9] on predicting timbral features of combined
sounds. This study found that for 3 features (Spectral Cen-
troid, Spectral Spread, and Main Resolved Partials), and
for mixtures of up to 4 sounds, predicting the features of
the mixture by a linear combination of the source features
both achieved a low error and did not vary as a function of
the number of mixture components.

Since computing a linear combination has very low
computational cost, this finding enables real-time estima-
tion of thousands of candidate mixtures for use in online
reinforcement learning, making tools like Orchidea practi-
cal for real-world use. The effects on the features of mix-
ing many more components, along with the behavior of
higher-dimensional and richer features, however, have not
yet been investigated.

2 https://www.xInaudio.com/products/xo

4. EXPERIMENTS
4.1 Data

For our experiments, we use the OrchDB dataset of indi-
vidually recorded musical notes from a variety of orches-
tral instruments. OrchDB is a streamlined subset of the
Studio Online (SOL), dataset that has been optimized for
assisted orchestration [30]. Collected as part of the Studio
Online project at IRCAM, the full SOL data set contains
over 117,000 instrument samples, including extended tech-
niques and contemporary playing styles. OrchDB, which
contains a curated subset of these samples, has been used
for assisted orchestration since 2008 [7]; the contents of
the data are summarized below:

e OrchDB contains about 20,000 notes with lengths
ranging from about 1 second to 30 seconds.

e Instruments include bassoon, clarinet, flute, horn,
oboe, saxophones, strings, trombone, trumpet, and
tuba.

e Approximately 30 different playing styles are rep-
resented in OrchDB, such as ordinario, pizzicato,
pizzicato Bartdk, aeolian, Flatterzung, col legno bat-
tuto; brass instrument samples include a variety of
different types of mutes.

e Notes across the pitch range are included, along
with a range of dynamics from ppp to fff, including
sforzato and crescendo.

4.2 Mixtures of Notes

To train and evaluate models for feature estimation, we par-
tition the dataset into nonoverlapping subsets for training,
development, and testing, choose 6 different numbers of
mixture components M between 2 and 30, and then for
each M, we synthesize a dataset of new audio files by
adding together the raw waveforms of M randomly cho-
sen notes. Finally, we divide the summed signals by M
to keep the amplitudes of the mixture in the same range as
those of the source files.

For each value of M, we synthesize 7500 new audio
mixtures for training, 2000 for development, and 2000 for
testing, creating these new mixtures after partitioning our
data so that no source file that appears in the training set
can be chosen as part of a mixture in the test set. After
synthesizing the mixtures, we compute and store the real
FFT and MFCC features for every mixture for use in train-
ing and evaluating our models.

4.3 Predicting Unobserved Features

With this data in hand, we explore several models for pre-
dicting the features of a mixture of audio signals given the
features of the individual signals. In all experiments, given
a feature function f and M individual signals Sy, ..., Sus,
each model is trained to learn a mapping from input fea-
tures f(S1),..., f(Sa) to the true feature of the mixture

MFCC Standard Deviation
Mean Per Coefficient

.....

Number of Mixtures

Figure 1. Standard Deviations (averaged across all 19 co-
efficients) of the real MFCC coefficients of mixtures of au-
dio files. As M increases, the variance in the MFCC coef-
ficients goes down.

5. MODELS
5.1 Features

For our modeling experiments, we choose two standard
features: 1024-dimensional FFT magnitude spectra and
19-dimensional MFCC coefficients (we discard the first of
20 MFCC coefficients). Our choice of features is meant to
capture the most common MIR settings, so we use the de-
fault FFT and MFCC dimensions specified in the Librosa
library [22] and compute the features on audio files sam-
pled at 22050 Hz using the default window size (2048 sam-
ples) and hop size (512 samples) of the Librosa implemen-
tations. We then follow [8] in flattening both the FFT and
MEFCC features from 2-dimensional time-frequency repre-
sentations into 1-dimensional feature vectors by taking a
linear combination of the features at each frame, weighted
by the RMS energy at the corresponding frame.

This method of averaging over time allows us to sum-
marize the spectral characteristics of signals with differ-
ent lengths using a single feature feature vector, while at
the same time ignoring the quieter parts of the signal. In
addition, we preserve the interpretability of the FFT and
MEFCC features through this process, which is particularly
useful for inspecting and analyzing our model outputs. Of
course, the downside of this preprocessing step is that we
discard all time-domain information, so we are unable to
predict anything about the envelope or movement of the
sound. Depending on the source material and the down-
stream application, different preprocessing choices might
be more appropriate than averaging over time; for exam-
ple, unpitched percussive sounds require different model-
ing choices from pitched material. Since our data consists
of mostly pitched notes from orchestral instruments, how-
ever, we follow the convention of the assisted orchestration
literature by focusing on timbre independent of time.

Finally, before training or evaluating models, in order
to best align our quantitative results to the expected per-
ceptual results with regards to timbre, we normalize the
FFT feature vectors such that the maximum value is 1. Al-
though in the FFT case, relative magnitudes are known to
be more correlated with perception of timbre than the raw
amplitudes are, magnitudes of MFCC coefficients are im-
portant descriptors of timbre, so we do not normalize the

MFCC’s, instead predicting the real values.

5.2 Baseline

As a baseline, we compute the element-wise mean of the
feature vectors over the entire training set. This vector is
computed once for each value of the number of mixture
components M. Models that perform better than this base-
line can be said to be capturing some useful information
about how the features sum together. One important fac-
tor to take into account when evaluating results it that as
we increase M, mixing more and more notes together, the
variance in the features of the mixtures decreases, making
the predictive task appear easier. The MFCC features, be-
cause they are much lower dimensional than the FFT’s, are
especially effected by this change in variance; the higher
dimensional FFT features exhibit the same trend but to a
smaller extent, as they can capture a wider range of combi-
nations of signals. For this reason, in Section 6, we report
error metrics as a percentage relative to the error metric of
this baseline at the corresponding value of M. Concretely,
an error of 0.5 would mean that, averaged over the test set,
the sum of squared errors of our predictions was equal to
half of the sum of squared errors obtained by always pre-
dicting the mean of the data set.

5.3 Linear Combination

The first model we examine is the linear combination of
features proposed in [9], which is currently used in state-
of-the-art assisted orchestration systems [10]. This model
implicitly assumes that for a feature f, the feature of the
sum is approximately equal to the sum of the features:

wlf(Sl)—i— . .—|—wa(SM) ~ f(w151+. .. ’LUMSM) (1)

When features are linear or can be well approximated
linearly, this method can be a strong baseline. Especially
with high dimensional features like our 1024 FFT magni-
tudes, subtle details that might be difficult to summarize
in an intermediate representation can be easily preserved
with a linear model.

For this model, we combine source features in two
ways, first by taking the element-wise mean of the M
feature vectors as shown in Equation (2) and second by
weighting the features by the corresponding RMS energies
aj . ..apr of the component signals as in Equation (3):

f= @)
fi

fia;
> a;

M =~

f= 3)

54 MLP

Particularly for nonlinear features, it is reasonable to ex-
pect that nonlinear models have the potential to make bet-
ter estimates. We train multilayer perceptron (MLP) neu-
ral networks to predict both FFT and MFCC features. For

these models, we use a single hidden layer, and we min-
imize the mean squared error (MSE) between the predic-
tions and the targets. For the FFT models, in order to con-
strain the network to output magnitudes between 0 and 1,
we use a ReLU activation followed by a L, normaliza-
tion layer as the last stage in our network. Although we
found empirically that sigmoid activations gave similar ac-
curacies, these choices match better with the intuition of
normalization performed in preprocessing. We train all our
neural network models with Tensorflow [1] and Keras [12],
Dropout [27], and the Adam optimizer [19].

Because we are interested in testing our methods on a
variable number of audio mixtures M, we train separate
MLP models for each value of M. As M increases, the
input size and number of parameters in the network in-
creases accordingly; with a feature of dimension D and
a hidden layer of size H, the first layer of these networks
has D x M x H trainable parameters.

5.5 LSTM

As we increase the number of mixtures M, a recurrent net-
work architecture is a natural choice to reduce the number
of parameters needed. Intuitively, if a network can learn to
estimate the sum of two signals, the same network should
be able to process M signals in sequence over M steps by
estimating the sum of one signal with the sum of all the
signals processed so far.

5.5.1 Ordered Sets

Because the true sum of M signals is independent of the
order in which they are combined, we experiment with two
approaches inspired by the literature on sequence models
for sets. First, even when no true ordering exists, previous
results demonstrate that the ordering of inputs to factor-
ized probabilistic models still affects the ability of models
to learn [29]. In the case where two semantically valid or-
derings exist, empirical results from machine translation
show that simple changes to the ordering, such as revers-
ing the words in a sentence, can significantly affect model
performance [28]. Based on these results, for this variant
of the model, we sort the signals by their Lo norm before
passing them to LSTM model, such that the source signal
with the highest energy is observed at the final timestep
before outputting a final prediction.

5.5.2 Unordered Sets

Although previous work points to the benefits of ordering
the signals in a consistent way, fixing an ordering prevents
us from implementing a simple but potentially powerful
form of data augmentation - randomly shuffling the order
of mixtures during training. We empirically test the rela-
tive benefits of these two options, reporting results for both
ordered and unordered inputs with the same LSTM archic-
ture.

5.5.3 Residual Connections

Finally, we experiment with one more variation of our
LSTM model, in which we add a residual connection [17]

between the model inputs at each timestep and the outputs
of the LSTM layer, which allows information to pass di-
rectly from the input to the final layer without having to
be mediated by the nonlinear structure of the LSTM. In-
tuitively, to the degree to which features are linear, this
connection should provide the model with the option to di-
rectly sum up the features as part of its computation.

6. RESULTS

We train and evaluate all of the models across 6 different
numbers of mixtures M ranging from 2 to 30, summariz-
ing the results in Tables 1 and 2 and displaying the trends
across values of M in Figures 2 and 3.

6.1 Predicting FFT Features

As demonstrated in Figure 2, the linear combination out-
perform the neural methods for values of M between 2 and
12, but the LSTM models make up ground and ultimately
begin to overtake the linear combinations at M = 20 mix-
tures. All of the models in the FFT setting trend up in error
towards the baseline as the number of mixtures increases;
with M = 30, all models except for the residual LSTM
cross the threshold of the baseline. These results indicate
several findings:

e While the ordering in which the mixtures are passed
to the LSTM model does not appear to make a sig-
nificant difference here, the residual LSTM model
outperforms the rest of the neural methods at all val-
ues of M, demonstrating increasingly large gains as
the number of mixtures goes up. This suggests that
the residual connection may be enabling the model
to exploit the linearity of features when it is advanta-
geous to do so, while maintaining flexibility to make
better estimations once the signal from the linearity
of the feature fades.

e In confirmation with previous findings [9], these re-
sults suggest that linear approximations of FFT fea-
tures can be quite accurate. As the number of mix-
tures increases, however, these estimates worsen; by
M = 30, the linear approximations are no better
than random.

e Although estimating a high dimensional feature like
the FFT is clearly a challenging task as many
streams of audio are mixed together, these results
show that neural models do possess the potential to
estimate these features to some degree even in set-
tings with many different sources.

6.2 Predicting MFCC Features

Unlike in the case of the FFT features, all of the neural
models outperform the linear combination for both small
and large numbers of mixtures, and as shown in Figure 3,
with more than 6 mixtures, linear combinations of MFCC
features no longer contain a useful signal. We detail our
findings from the MFCC experiments below:

FFT Predictions

Relative to Baseline

0.75

== Baseline
-®- Linear (Energy Weighted)
- MLP

LSTM (Unordered)

LSTM (Residual)

(Percent of Baseline)

MSE
o
N

5 10 15 20 25 30
Number of Mixtures

Figure 2. The linear models work well for predicting FFT
features of small numbers of mixtures, but at around M =
20 mixtures, the best performing LSTM model overtakes
the linear combination.

e Because MFCC features are nonlinear, it is not sur-
prising that nonlinear models are able to predict
them better than the linear combination. Relative to
the baseline, however, we can see that for mixtures
of 2, 3, and even 6 different sources, a linear com-
bination of MFFC'’s can still be reasonably accurate.
This suggests that in some cases, MFFC features do
behave approximately linearly when summed.

e In contrast to the FFT setting, the residual LSTM
does not appear to offer any gains in comparison
with the other LSTM models. Perhaps because of
the much smaller dimension of the features, the Un-
ordered LSTM model, which we train with data aug-
mentation by randomizing the order in which mix-
tures of processed, performs best.

e As M continues to increase, the accuracies of the
LSTM models flatten out rather than continuing to
approach the baseline. This trend suggests that even
when dozens of notes are mixed together, we may
be still able to estimate certain features of these mix-
tures based only on the features of the source files.

6.3 Computation Time

While the exact computation time of FFT or MFFC fea-
tures depends on the implementation, the length of the au-
dio files, and the availability of parallel processing, esti-
mating features with the networks we explore is, in prac-
tice, significantly faster than computing the real features.
Though it is beyond the scope of this paper to report results
on a comprehensive list of hardware and software config-
urations, as a point of reference, Table 3 displays running
times for parallel computation on our research server con-
taining 20 CPU’s and one Tesla K40 GPU.

7. CONCLUSIONS

In this work, we experiment with neural models for pre-
dicting unobserved audio features based on precomputed

Model 2 Mixtures | 3 Mixtures | 6 Mixtures || 12 Mixtures | 20 Mixtures | 30 Mixtures
Baseline 1 1 1 1 1 1
Linear (Mean) 0.44 0.60 0.73 0.85 0.99 1.16
Linear (Energy-Weighted) 0.15 0.25 0.41 0.62 0.83 1.04
MLP 0.72 1.10 1.23 1.24 1.17 1.36
LSTM (Unordered) 0.54 0.69 0.78 0.81 0.89 1.34
LSTM (Ordered) 0.55 0.73 0.85 0.88 0.86 1.35
LSTM (Residual) 0.49 0.67 0.84 0.85 0.81 0.91
Table 1. Mean Squared Error for predicting FFT features across different numbers of mixtures.

Model 2 Mixtures | 3 Mixtures | 6 Mixtures || 12 Mixtures | 20 Mixtures | 30 Mixtures
Baseline 1 1 1 1 1 1
Linear (Mean) 0.43 0.58 0.81 1.03 1.32 1.54
Linear (Energy-Weighted) 0.36 0.59 0.94 1.30 1.69 2.02
MLP 0.42 0.55 0.71 0.79 0.88 0.93
LSTM (Unordered) 0.30 0.46 0.57 0.63 0.71 0.70
LSTM (Ordered) 0.30 0.46 0.61 0.66 0.73 0.73
LSTM (Residual) 0.32 0.47 0.64 0.71 0.77 0.77

Table 2. Mean Squared Error for predicting MFCC features across different numbers of mixtures.

MFCC Predictions

Relative to Baseline

(Percent of Baseline)

== Baseline
-@- Linear (Energy Weighted)
-& MLP

LSTM (Unordered)

LSTM (Residual)

0.5

MSE

5 10 15 20 25 30

Number of Mixtures

Figure 3. The neural models outperform the linear combi-
nations significantly, widening the gap as M increases.

features of source files in a mixture, examining the cases of
FFT features, which should behave linearly when summed,
as well as MFCC'’s, which are known to be nonlinear. We
find that in the case of nonlinear features, LSTM models
significantly outperform the methods currently in use for
feature estimation, and further, that while the linear pre-
dictors perform well for small numbers of mixtures, as we
mix more and more signals together, the neural models be-
gin to outperform the linear methods as well.

Our results suggest that we may be able to improve cur-
rent assisted orchestration systems [10] by replacing fea-
ture estimation components with LSTM-based nonlinear
predictors. As with any real-world problem that involves
perceptual similarity rather than comparisons in a feature
space, however, more work is needed to understand how
these models may interact with other components of sys-
tems they may be embedded in. Deep neural network mod-

Feature Real LST™M LSTM
(CPUXx20) | (CPUXx20) | (GPUX 1)
FFT (Mix 2) 14.71 0.32 0.07
FFT (Mix 30) 14.71 475 1.10
MFECC (Mix 2) 73.50 0.03 0.01
MFCC (Mix 30) 73.50 0.34 0.15

Table 3. Time in seconds to compute or estimate energy-
weighted FFT or MFCC features for the 2000 audio files in
the test set using parallel processing. FFT (Mix 30) refers
to the FFT feature of a mixture of 30 audio files, which
requires 30 autoregressive LSTM steps. LSTM refers to
the Residual LSTM model.

els can and do adapt to any correlations present in the data,
so understanding how these models are making there esti-
mates may be important.

Beyond tasks like assisted orchestration in which we
cannot always observe the features of an audio file be-
cause of computational limitations, we hope that future
work may be able to take advantage of the methods for
feature estimation explored here in order to make creative
use of data like the Million Song Dataset, for which pre-
computed features are available but raw data cannot be dis-
tributed.

8. ACKNOWLEDGMENTS

The research reported in this article was supported by the
Hellman Family Faculty Fund and by resources provided
by NVIDIA. We also thank the anonymous reviewers for
their valuable feedback.

(1]

(2]

(3]

[4]

(6]

(7]

(8]

[9]

[10]

9. REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learn-
ing. In 12th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 16), pages
265-283, 2016.

Aurelien Antoine and Eduardo Miranda. A perceptu-
ally orientated approach for automatic classification of
timbre content of orchestral excerpts. The Journal of
the Acoustical Society of America, 141(5):3723-3723,
2017.

Shoko Araki, Francesco Nesta, Emmanuel Vincent,
Zbynék Koldovsky, Guido Nolte, Andreas Ziehe, and
Alexis Benichoux. The 2011 signal separation evalu-
ation campaign (sisec2011):-audio source separation.
In International Conference on Latent Variable Anal-
ysis and Signal Separation, pages 414—422. Springer,
2012.

Adel Belouchrani, Karim Abed-Meraim, J-F Cardoso,
and Eric Moulines. A blind source separation tech-
nique using second-order statistics. I[EEE Transactions
on signal processing, 45(2):434-444, 1997.

Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whit-
man, and Paul Lamere. The million song dataset.
In Proceedings of the 12th International Society for

Music Information Retrieval Conference, pages 591—
=596, 2011.

Marcelo Caetano, Asterios Zacharakis, Isabel Barban-
cho, and Lorenzo J Tardén. Leveraging diversity in
computer-aided musical orchestration with an artificial
immune system for multi-modal optimization. Swarm
and Evolutionary Computation, 2019.

Grégoire Carpentier. Approche computationnelle de
lorchestration musciale-Optimisation —multicritere
sous contraintes de combinaisons instrumentales dans
de grandes banques de sons. PhD thesis, Université
Pierre et Marie Curie-Paris VI, 2008.

Grégoire Carpentier, Gérard Assayag, and Emmanuel
Saint-James. Solving the musical orchestration prob-
lem using multiobjective constrained optimization with
a genetic local search approach. Journal of Heuristics,
16(5):681-714, 2010.

Grégoire Carpentier, Damien Tardieu, Jonathan Har-
vey, Gerard Assayag, and Emmanuel Saint-James. Pre-
dicting timbre features of instrument sound combina-
tions: application to automatic orchestration. Journal
of New Music Research, 39(1):47-61, 2010.

Carmine-Emanuele Cella and Philippe Esling. Open-
source modular toolbox for computer-aided orchestra-
tion. 2018.

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

Keunwoo Choi, George Fazekas, and Mark Sandler.
Automatic tagging using deep convolutional neural
networks. In Proceedings of the 18th International
Society for Music Information Retrieval Conference,
2017.

Francois Chollet et al. Keras, 2015.

Brecht De Man and Joshua D Reiss. A semantic ap-
proach to autonomous mixing. Journal on the Art of
Record Production (JARP), 2013.

Antti Eronen and Anssi Klapuri. Musical instrument
recognition using cepstral coefficients and temporal
features. In 2000 IEEE International Conference on
Acoustics, Speech, and Signal Processing. Proceedings
(Cat. No. 00CH37100), volume 2, pages 11753-11756.
IEEE, 2000.

Zhe-Cheng Fan, Yen-Lin Lai, and Jyh-Shing R Jang.
Svsgan: Singing voice separation via generative adver-
sarial network. In 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pages 726-730. IEEE, 2018.

Curtis Hawthorne, Erich Elsen, Jialin Song, Adam
Roberts, Ian Simon, Colin Raffel, Jesse Engel, Sageev
Oore, and Douglas Eck. Onsets and frames: Dual-
objective piano transcription. In Proceedings of the
19th International Society for Music Information Re-
trieval Conference, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 770-778, 2016.

Eric Humphrey, Simon Durand, and Brian McFee.
Openmic-2018: an open dataset for multiple instru-
ment recognition. In Proceedings of the 19th Interna-
tional Society for Music Information Retrieval Confer-
ence, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Stephen McAdams. Perspectives on the contribution of

timbre to musical structure. Computer Music Journal,
23(3):85-102, 1999.

Stephen McAdams. Timbre as a structuring force
in music. In Proceedings of Meetings on Acoustics
ICA2013, volume 19, page 035050. ASA, 2013.

Brian McFee, Colin Raffel, Dawen Liang, Daniel PW
Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto.
librosa: Audio and music signal analysis in python. In
Proceedings of the 14th python in science conference,
pages 18-25, 2015.

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

Adib Mehrabi, Keunwoo Choi, Simon Dixon, and
Mark Sandler. Similarity measures for vocal-based
drum sample retrieval using deep convolutional auto-
encoders. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 356-360. IEEE, 2018.

Andrew Owens and Alexei A Efros. Audio-visual
scene analysis with self-supervised multisensory fea-
tures. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 631-648, 2018.

Joshua Reiss and @yvind Brandtsegg. Applications of
cross-adaptive audio effects: automatic mixing, live
performance and everything in between. Frontiers in
Digital Humanities, 5:17, 2018.

Carl Southall, Ryan Stables, and Jason Hockman. Au-
tomatic drum transcription using bi-directional recur-
rent neural networks. In Proceedings of the 17th Inter-
national Society for Music Information Retrieval Con-
ference, pages 591-597, 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from over-
fitting. The Journal of Machine Learning Research,
15(1):1929-1958, 2014.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Se-
quence to sequence learning with neural networks. In
Advances in neural information processing systems,
pages 3104-3112, 2014.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur.
Order matters: Sequence to sequence for sets. arXiv
preprint arXiv:1511.06391, 2015.

Rolf Woéhrmann and Guillaume Ballet. Design and ar-
chitecture of distributed sound processing and database
systems for web-based computer music applications.
Computer Music Journal, 23(3):73-84, 1999.

Yusuf Yaslan and Zehra Cataltepe. Audio music genre
classification using different classifiers and feature se-
lection methods. In 18th International Conference on
Pattern Recognition (ICPR’06), volume 2, pages 573—
576. IEEE, 2006.

