AUDIO Audio Engineering Society

I .
L | Convention Paper

® Presented at the 144" Convention
2018 May 23 — 26, Milan, Italy

This convention paper was selected based on a submitted abstract and 750-word precis that have been peer reviewed by at
least two qualified anonymous reviewers. The complete manuscript was not peer reviewed. This convention paper has been
reproduced from the author’s advance manuscript without editing, corrections, or consideration by the Review Board. The
AES takes no responsibility for the contents. This paper is available in the AES E-Library (http://www.aes.org/e-1lib), all rights
reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the
Audio Engineering Society.

Deep Learning for Timbre Modification and Transfer: an
Evaluation Study

Leonardo Gabrielli!, Carmine E. Cella2, Fabio Vesperinil, Diego Droghinil, Emanuele Principil, and Stefano
Squartini'

VYWniversita Politecnica delle Marche, Ancona, Italy
2IRCAM, Paris

Correspondence should be addressed to L. Gabrielli (1.gabrielli@univpm.it)

ABSTRACT

In the past years, several hybridization techniques have been proposed to synthesize novel audio content owing its
properties from two audio sources. These algorithms, however, usually provide no feature learning, leaving the
user, often intentionally, exploring parameters by trial-and-error. The introduction of machine learning algorithms
in the music processing field calls for an investigation to seek for possible exploitation of their properties such as
the ability to learn semantically meaningful features. In this first work, we adopt a Neural Network Autoencoder
architecture and we enhance it to exploit temporal dependencies. In our experiments the architecture was able
to modify the original timbre, resembling what it learned during the training phase, while preserving the pitch
envelope from the input.

1 Introduction source and merge them together and algorithms that
interpolate each feature from the two sources to obtain

. . . . a mixed signal.
The music signal processing literature is rich of al- &

gorithms for the synthesis of novel sounds from two
or more different sound sources to allow creative
and surprising effects and enhance sound design prac-
tice. A number of techniques are known to that ex-
tent, although terms and definitions may slightly vary:

Cross-synthesis is defined by Julius O. Smith as a sound
processing algorithm where the spectral envelope of
one sound is impressed on the flattened spectrum of
another [2], and a similar proposition is reported in [3],
additionally including vocoding as a synonym.

analysis-resynthesis, cross-synthesis, vocoding, mor-
phing or hybridization are terms used widely in the
literature. According to the systematization of Caetano
et al. [1], the terms hybridization and morphing can
be employed, respectively, to distinguish between algo-
rithms that aim at taking different features from each

Analysis-resynthesis is a family of techniques allow-
ing to describe timbre and manipulating it and is often
used in morphing by interpolating synthesis parameters
obtained from two sound sources. Typical examples
include sinusoidal modelling [3] or time-frequency do-
main transforms [4].

Gabrielli, Cella, Vesperini, Droghini, Principi, Squartini

Deep Learning for Timbre Modification

Hybridization, instead, requires extracting specific fea-
tures of a signal. The construction of new signals is
done by imposing some of the features of a signal onto
another. Features can be extracted at different abstrac-
tion levels. Low-level representations are generic, have
very high dimensionality and often give only access
to geometric transformations (translations, rotations,
etc.) [S]. Mid-level representations are often related
to perceptual concepts and allow for transformations
on specific variables such as pitch [6]. Finally, abstract
representations are more expressive, have a low dimen-
sionality and relates to high level musical concepts [7].

With the present work we start investigating the use
of Machine Learning (ML) for the goal of obtaining
new morphing or hybridization algorithms. The motiva-
tion for using ML for sound hybridization or morphing
comes from the interesting results of Gatys et al. [8] in
the image processing field. In their works the authors
showed how it is possible, using the latent space of
a deep neural network, to transfer high level features
from one image to another. The proposed algorithm
allows for an effective machine-learned representation
of artistic style from a template image that can be trans-
ferred to a content image by preserving its subject while
altering its perceived qualities (shape, line, colour, tex-
ture and so forth). It is interesting to remark that the
transferred features are not simple effects but real traits
of the style of the image.

Other researchers and machine learning developers ex-
perimented with the same algorithms to test whether
these were able to produce similar results with audio
signals, and specifically, musical signals. Currently, a
few attempts, some of which are unpublished but have
open source code released, report that current methods
are inadequate to learn and represent music features
[9, 10, 11]. This is probably related to the different
application domain: images and spectrograms are dif-
ferent in that the first are isotropic while the second are
not, and the information contained in the frequency and
temporal axes have different scales, different structure
and repetition thereof.

To the best of our knowledge, it seems that the only
successful result of ML in this field is that obtained
by the Magenta team with WaveNet in [12], where in-
terpolation in the latent code feature space extracted
by the WaveNet network produces sound morphing.
The WaveNet architecture projects raw audio signals
to a feature space that is learned by the network. In

[12] an encoding WaveNet stage is followed by an in-
verse decoding (i.e. resynthesis) stage. One downside
of this approach is the prohibitive computational cost.
Up to now, training the network is possible only for
specialized hardware available only to the Magenta
team researchers. Furthermore, no tests have been con-
ducted on time-varying audio, but only on the dataset
described in the paper (later discussed in Section 4).

In the present work we follow a bottom-up approach,
starting from simple and well-known ML architectures
of low computational cost. Specifically, our approach
involves a Neural Network Autoencoder in the time-
frequency domain, trained on a audio signal to learn
some of its features. The trained Autoencoder is then
employed to process a test signal. The expected result
is that features from the training signal are retained
and imposed onto the test signal, i.e. what would be
expected from a timbre transfer algorithm.

Section 2 proposes a ML architecture to learn and trans-
fer spectral features, Section 3 reports comparative
methods used during the experiments of Section 4. Re-
sults are discussed in Section 5 and conclusions are
drawn in Section 6.

2 Proposed Method
Neural Network Architecture

The proposed neural network architecture is designed
to capture spectral characteristics of audio signals in the
time and frequency domain. The architecture adopted
to perform this task is an autoencoder, i.e., a neural
network trained to copy its input to its output [13]. A
properly trained autoencoder, however, does not per-
form a simple copy operation, but learns significant
characteristics of the training data. This property has
been exploited in several different task in the literature,
such as novelty detection [14], dimensionality reduc-
tion [15], and speech enhancement [16]. Here, the
capabilities of the autoencoder are used to transform
the input data based on the characteristics of the train-
ing data. The rationale here is that the autoencoder will
try to reconstruct the input based on the knowledge
acquired during the training phase, thus transforming
the input signal based on the characteristics of the train-
ing data. An overview of the proposed architecture is
shown in Figure 1 for the sake of clarity, and its details
will now be presented.

AES 144" Convention, Milan, Italy, 2018 May 23 — 26
Page 2 of 10

Gabrielli, Cella, Vesperini, Droghini, Principi, Squartini

Deep Learning for Timbre Modification

Input Encoder Code

=1

>

(LSTM)

ﬂHM

Output Reconstruction
i 1

Decoder

S(f.k)

cos(£5(f,k))

sin(Z5(f,k))

ZS(f,k)

Fig. 1: Overview of the proposed architecture.

Denoting with S(f,k) the Short-Time Fourier Trans-
form (STFT) at frame k of an audio signal s[n], the
network is designed to accept an input vector u[k] com-
posed of the STFT magnitude and phase of frames
adjacent to the one being processed. The phase is ex-
pressed as sin(/S(f,k)) and cos(/S(f,k)) terms. De-
noting with x[k] the vector

IS(f, k)]
cos(/S(f,k)) |,
sin(/S(f,k

X[k] ey

the network input vector u[] is given by:
x[k—1]

x[k]
x[k+1]

(@)

Indicating with F the size of the FFT, the vectors x[k]
and u[k] are respectively composed of 3F and 9F ele-
ments.

The encoding section of the network is composed of a
stack of fully connected layers of gradually narrower
size, reaching the inner hidden layer that yields the
latent code of representation. Similarly, the decoding
section is composed of a stack of fully connected layers,
excepts for the fact that the layer size gradually grows
from the inner hidden layer to the output layer.

The output layer of the network is composed of 3
groups of F' neurons, so that the output vector is ar-
ranged as x[k]. Each group is specialized to reconstruct

(f,k) as

\
(). 3)

())

The ReLU activation function is only applied to the
group related to the magnitude reconstruction, in order
to constrain the output values to be positive. The tanh
activation function is applied to all other neurons in
the architecture, in order to allow the signals to assume
values in the range [—1,1].

a component of the complex

an\ 0

S(
X[k] = | cos(
(

Such a simple configuration is able to learn and repro-
duce an averaged spectrum, so that a dataset containing
chromatic scales reproduces a signal that contains all
musical notes at the same time. This is not sufficient in
the current context, thus, temporal dependencies must
be learned by the network. This can be obtained by
using one or more recurrent layers as inner layer of
the network. In particular, we used one hidden layer
composed of Long-Short Term Memory block (LSTM).
These blocks can efficiently exploit a long-range tem-
poral context by means of connections between units
which form directed cycles, and store state information
in the cell.

A feature-wise batch normalization is applied to the
output of each layer of the network in order to reduce
the internal covariance shift and to better distribute the
latent representations obtained during the network train-
ing procedure. In addition, the dropout technique was
employed during the neural network training to prevent

AES 144" Convention, Milan, Italy, 2018 May 23 — 26
Page 3 of 10

Gabrielli, Cella, Vesperini, Droghini, Principi, Squartini

Deep Learning for Timbre Modification

overfitting and increase the generalization performance
of the neural network in reconstructing the input signal.

Training is performed by using a dataset composed of
audio signals characterized by the desired timbre. The
network is trained to minimise the mean squared error
between the estimated signal X[k] and the input signal
x[k] by using the AdaDelta stochastic gradient-based
optimization algorithm. It was chosen because it is
well-suited for dealing with sparse data and is robust to
different choices of model hyperparameters. Further-
more no manual tuning of learning rate is required.

Resynthesis

During the generation phase, a novel input is employed
featuring a different instrument/timbre from the ones
used during training. Special care must be taken in
the inverse STFT processing in order to provide time-
domain reconstruction without phase artefacts. Owing
from works in cross-synthesis and spectral morphing
[17], the predicted spectral magnitude and phase can be
mixed with the magnitude and phase of the input signal.
Denoting with § the DFT of the final reconstructed
signal, the output magnitude and phase are obtained as:

18] = alS|+ (1 —a)[S|+am/IS|-1S]. 4

/S=b/S+(1—-b)/S, (5)

where 0 < a,b,ay < 1 determine the proportion be-
tween the estimated and original signal components.
In practice, the original magnitude information is not
used, i.e., $'| = |§ , while choosing b close to 0.5 allows
to obtain a time domain signal with reduced artefacts.
This is the choice followed for all reported experiments.

3 Comparative Methods

To provide a comparison to the proposed approach,
the following methods for timbre transfer have been
implemented to be tested with the same audio material.
The implemented algorithms are:

e spectral envelope hybridization: in this case,
the timbre transfer is performed by computing
the spectral envelope of both signals, flattening
the envelope of the target signal by deconvolution
and then multiplying it by the source signal; in
this context, the spectral envelope is based on the
cepstrum as follows:

E = DFT(Wp(DFT ™' (log(IDFT (5)|)))) (6)

where Wy p is a low-pass filter in the cepstral do-
main called liftering filter and S is a signal in time
domain;

o MFCC-based mosaicing: this method performs
timbre transferring by replacing the frames of
the source signal by specific frames of a target
dataset of sounds (that we call dictionary), where
the match is done by some distance measure in a
specific domain; in this context, we used a k-nn
algorithm applied on the first 14 Mel-frequency
cepstral coefficients (MFCC) of each frame [18].

For the MFCC-based approach, the length of the gen-
erated output sound is equal to the length of the input
sound. For the other methods, instead, the generated
output is as long as the longest between input and target,
where the shorter one is repeated as necessary during
the process.

The spectral envelope hybridization and the MFCC-
based mosaicing methods do not require parameters
and perform a full timbre transfer between the pro-
cessed signals; on the other hand, the DFT morphing
requires the setting of the interpolation parameters. In
this context we decided to create the output sound by
using the phases of the source signal and the ampli-
tudes of both signals while keeping some bias on the
target signal. To achieve this, we set the interpolation
parameters as follows: a =0,b = 1,ay = 1.

4 Experiments

Experimental Setup

The algorithm has been implemented in the Python
programming language using the Keras deep learning
libraries. All the experiments were performed on a
CINECA Galileo computational node with Nvidia K80
accelerators.

The neural networks were trained with the Adadelta
gradient descent algorithm and a learning rate equal
to 1.0,p =0.95, e = 10~°. The maximum number of
epochs was set to 300 and an early stopping strategy
on the validation set loss with 20 epochs of patience

AES 144" Convention, Milan, Italy, 2018 May 23 — 26
Page 4 of 10

Gabrielli, Cella, Vesperini, Droghini, Principi, Squartini

Deep Learning for Timbre Modification

was employed for regularization. Each training iter-
ation involved a number of samples (i.e., batch size)
between the 5% and the 10% of total samples present
in the training set, depending on the amount of samples
present on the latter.

The network weights were initialized with a random
Gaussian distribution with mean ¢ = 0 and standard
deviation o = 0.1, as it usually provides an acceptable
initialization in our experience. Several network topolo-
gies were tested, varying the number of layers and units
per layer. Indeed the number of layers of the encoder
has been varied from 1 to 4 while the number of unit
for each layer from 80 to 4096. The decoder part was
mirrored with respect to the encoder. The number of
LSTM layers has been varied from 0 (no LSTM layer)
to 1 with a number of units from 80 to 1024.

Two datasets have been employed for the evaluation of
the proposed approach. Dataset 1 is an internal dataset
of recorded solo instrumental or vocal tracks. Each
audio file consisted of 30-120 seconds of audio. The
following instruments were considered: clean electric
guitar (2 files), distorted electric guitar (3 files), synth
pad (2 file), trumpet (3 files), electric piano (3 files),
male voice (1 file), female voice (2 files). All the files
are real recordings of solo performance and thus con-
tains a rich content of notes, chords (for polyphonic
instruments), legatos, glissandi, and other expressive
effects. Each file is played on a single tonality.

Dataset 2 is built from a very large musical instrument
dataset shared by the Magenta project team!, contain-
ing single notes for eleven classes of musical instru-
ments. In creating Dataset 2 we picked ten from the
eleven classes, discarding the bass class because of
its narrow coverage of the frequency spectrum, and
randomly selected 3500 audio files for each class, to
give each class the same dimensionality. This dataset is
composed of short files containing a single note each,
at different dynamic levels and pitches. The differ-
ences between the two datasets have been exploited to
observe the role of the training data on the resulting
output.

All files from Dataset 1 have been sub-sampled to
22050 Hz to reduce the computational cost, while the
files from Dataset 2 are sampled at 16 kHz and were left
as such. The STFT of the audio signals were computed

Uhttps://magenta.tensorflow.org/nsynth

Table 1: Hyperparameters used for the experiment
with training on the distorted guitar track of
the song Sweet Child O’ Mine.

N;e;;:)(::‘tk Dropout
Encoder: 1024, 808 input units
LSTM: 808 to drop
Decoder: 808, 1024 p=0.1
Training Optimiser
epochs parameters
300, 20 patience learning rate = 1
Validation split=10% | p =0.95, &€ = 107°

Batch Normalization: £ = 10°, u = 0.9

with a 2048-points DFT, 50% overlap and window size
calculated in order to reach 43 frames per second.

Audio samples are available at
https://gitlab.com/a3labPapers/
CompanionFiles/tree/master/AES-XSynth.

5 Results

This section reports experiments with different audio
sources as target and input conducted on Dataset 1 and
2 together with a qualitative analysis of the synthesized
outputs. A first batch of experiments was conducted
with Dataset 1 to tune the network hyperparameters.
The outputs produced by autoencoders trained on each
file in the dataset have been evaluated by analysis of
their spectrograms and informal listening tests. The
hyperparameters reported in Table 1 have been found
to obtain acceptable results, which will be discussed
shortly. Without considering the output layer and input
layers, the network is composed of five layers: 2 layers
respectively of 1024 and 808 units, one LSTM layer
composed of 808 units, and 2 layers respectively of 808
and 1024 units.

Reconstruction Tests

Preliminary tests were conducted to ensure that the
autoencoder is able to reconstruct an input signal if it
is also used for training. The network is able to re-
construct sufficiently well the original file, although
some compression is inherent to the compressive au-
toencoding process. Figure 2 shows the spectrogram of
an electric guitar from Dataset 1 playing arpeggios and
chords and its reconstruction. The compression is visi-
ble from the spectrograms especially at high frequency.

AES 144" Convention, Milan, Italy, 2018 May 23 — 26
Page 5 of 10

Gabrielli, Cella, Vesperini, Droghini, Principi, Squartini

Deep Learning for Timbre Modification

Frequency [Hz]

14
Time [s]

(a) Original electric guitar track (input and target).

Frequency [Hz]

Time [s]

(b) Reconstruction.

Fig. 2: Spectrograms from (a) an electric guitar track,
(b) its reconstruction when using (a) as both
target and input. The hyperparameters for (b)
are reported in Table 1.

Dataset 1

These experiments were done with a female singing
voice input file (from now on, in short FV1). This
choice is motivated by the fact that the voice has subtle
pitch variations (vibratos, glissandi, etc.) and the voice
presents pitched, unpitched and unvoiced audio.

As an example of the results that can be obtained by
the proposed architecture, some selected outputs are
analysed in detail. A distorted guitar track from Dataset
1 (playing the tune in Sweet Child O’ Mine by Guns
N’Roses) is taken as the target for the proposed archi-
tecture with parameters shown in Table 1. The resulting
output file is named R1 for short, and its spectrogram
is shown in Figure 3(b). For comparison, the distorted
guitar track has also been used for the MFCC-based
mosaicing algorithm and for the spectral flattening al-
gorithm. The input file used for all techniques is FV1.
Its spectrogram is shown in Figure 3(a), followed by
the spectrograms obtained by the other methods.

With the proposed approach, timbre is quite coherent
from frame to frame if compared, for example, to the
MFCC-based method, thus resulting in a more convinc-
ing output. In the MFCC hybridization, furthermore, it
is also quite apparent that frames from the target sig-
nal appear from time to time in an inconsistent way
exposing explicit features of the target (for example, a
recognizable note in a riff). Finally, the spectral flat-
tening method has a recognizable vocoder-like timbre,
with the musical structure of the target file appearing
together with its spectral content, which is an undesired
feature in this context (see, for example, the arpeggios
of the target song appearing in the spectrogram and
chromagram approximately at 5s on to the end).

Chromagrams from audio files shown in Figure 3 are
shown in Figure 4, to compare the pitch trajectories and
the presence of spurious chromatic components. The
chromagrams obtained from the proposed architecture
(Figure 4(b),(e)) show similar pitch trajectories to the
input signal (Figure 4(a)). We observe that the network
fails to follow the pitch of the input when it is outside
the range learned during the training phase. This can
be seen around second 2 in Figure 4(e), where the high
pitch of the input file reaches a B4 which the network
cannot match, due to the lack of notes above G#4 in
the training set.

Dataset 2

The experiments with Dataset 2 were conducted by
training an autoencoder for each of the ten instrument
classes, thus greatly increasing the complexity of the
problem. Each trained autoencoder was subsequently
used to synthesize audio with FV1 as input, resulting
in ten audio files of different timbre and similar pitch
contour. As an example of the good pitch tracking
capabilities of the proposed architecture, we report a
DFT (4096 points) calculated for each file at a specific
time interval, where the input file shows a pitched /i:/
phoneme at frequency 497.6 Hz (B4 + 13 cents), see
Figure 5. Each DFT has different features (e.g., spectral
slope, spectral centroid, presence of noise, etc.) but all
have same pitch.

From the experiments with Dataset 2 we observed that
the network cannot follow glissando, pitch bending and
vibrato from the input because the dataset has no time-
varying pitch to be learned, being composed of static
single notes only. This is apparent by applying FV1

AES 144t Convention, Milan, Italy, 2018 May 23 — 26
Page 6 of 10

Gabrielli, Cella, Vesperini, Droghini, Principi, Squartini

Deep Learning for Timbre Modification

as input and results in lower-quality note transitions
compared to the autoencoder trained on Dataset 1.

Judging timbre learning and transferring with this
dataset is difficult because of the extremely large vari-
ety of tones in an instrument class and the large number
of files to evaluate. The network cannot learn all the
timbres of the different instruments in a class, but it
learns instead an averaged spectrum of the whole class.
It must be noted that we are not conducting supervised
training in this work, thus, the network was not in-
structed with labels regarding the instrument type or
any other property of the target sound that could help
in clustering the timbre families inside a class. The
bandwidth of the output is related to that of the class
used for training with, e.g.,brass instruments having a
wide spectrum and flutes having a reduced bandwidth
when producing an output with the same input. We also
noted that the autoencoder trained on vocal samples
produces tones with a voice-like texture.

Pitch Tracking Accuracy

We conducted more systematic tests to quantify the
pitch tracking accuracy of the architecture. These tests
were conducted with Dataset 2 because of the precise
pitch of its content and its stability over time, allowing
for an easier pitch accuracy evaluation. Five audio files
were generated systematically from a MIDI file con-
taining 20 random notes. Each audio file was generated
from a different digital instruments using sampling syn-
thesis and employing equal temperament and 440.0 Hz
tuning. Using the 5 files as input to the 10 networks,
resulted in 50 outputs for a total of 1000 notes.

Pitch accuracy was evaluated by employing a peak
picking algorithm in the frequency domain [2], using
a thresholded parabolically-interpolated STFT?. For
each note, the accuracy was evaluated considering 128
pitch classes (those defined by the MIDI protocol),
plus one unpitched class (i.e.,the output shows no clear
pitch information, despite the input content which was
always pitched). A pitch tolerance of £50 cents and
an octave tolerance of £1 were allowed. Only 12% of
the 1000 notes lost the original pitch, showing a good
reliability of the network in retaining the original pitch
of the input.

Zhttps://librosa.github.io/librosa/generated/librosa.core.piptrack.html

Discussion

Overall, some properties of the proposed method are
summarized.

The output pitch follows quite closely the pitch of
the input signal if the training set contains pitched
audio in the same range as the input, however, the
network is not able to generalize above or below
the pitch range learned from the target file.

For multi-pitched inputs (e.g., containing chords)
the network is usually able to generalize providing
a harmonization similar to the input.

The timbre of the output signal resembles that
of the training set, if the latter is sufficiently ho-
mogeneous (e.g., solo instrument from a track or
separate notes from a specific instrument).

Unpitched frames in the input audio are mapped
to unpitched frames in the output if the training
set contains unpitched material.

Spectral continuity has intermediate quality be-
tween k-nn approaches and whitening approaches,
i.e., frames do not change abruptly, thanks to the
input context and the LSTM layer, but may still
have deviations on a larger time basis. Previous
experiments without context and the LSTM layer
resulted in an output subject to abrupt variations
from frame to frame similar to mosaicing.

e The algorithm does not guarantee that the frame
energy of the input is transferred to the output.
If the training set does contain sufficient levels
of dynamic to learn there is a higher chance that
energy is preserved, but it is not always guaran-
teed. The shortcoming of this is the generation of
outlier frames when the input is silent or of low en-
ergy; this can be addressed by applying the input
frame energy to the output by conventional signal
processing techniques, but some constraints may
be applied to allow the network learning energy
preservation.

The proposed architecture is also able to perform mor-
phing in the frequency domain, according to equations
4-5.

AES 144" Convention, Milan, Italy, 2018 May 23 — 26
Page 7 of 10

Gabrielli, Cella, Vesperini, Droghini, Principi, Squartini

Deep Learning for Timbre Modification

6 Conclusion

This work discussed how machine learning can be ap-
plied to the synthesis of novel sounds from existing
sources, i.e. how it can provide a new class of transfer
algorithms that has different properties with respect to
conventional algorithms for morphing, hybridization,
etc. A neural autoencoder has been proposed to the task
and tested with different settings. Salient properties are
the ability to transfer the timbre of a training set to an
input file, while preserving its pitch. Pitch preservation
has been proved to be reasonably good with systematic
tests, while timbre transfer still needs improvement,
especially with a large corpus of input signals.

Compared to dictionary-based algorithms, such as k-nn
matching on MFCC, it proves to be more robust in term
of frame-to-frame coherence, because of its improved
generalization properties and possibly more relevant
frame mapping.

Nonetheless, the timbre transferring capabilities of the
algorithm are not systematically evaluated because it
is very sensitive to the features of its input and target
signals and an evaluation framework is missing. More
research work is required to make the network robust
to changes in frame energy, spectral bandwidth, time
decay and pitch range of the target and input audio, in
order to increase the intelligibility and the quality of
the output signal. Furthermore, the network must be
able to generalise for pitch ranges not learned from the
target signal, and must be more expressive in order to
learn different timbres in a large dataset.

Future works will be devoted to obtain improved results
by employing established convolutional techniques. Re-
cent trends in end-to-end convolutional neural networks
may bring improved timbre learning at an acceptable
computational cost [19, 20]. More research effort is
needed and, arguably, quantitative evaluation of the
results to this extent is required. Timbre classifica-
tion, following state of the art algorithms (see, e.g.,
[21]) may be regarded as a logical choice, avoiding the
arbitrary selection of metrics, distances or perceptually-
motivated measures.

Acknowledgments

We acknowledge the CINECA award under the ISCRA
initiative, for the availability of high performance com-
puting resources and support.

References

[1] Caetano, M. and Osaka, N., “A formal evaluation
framework for sound morphing,” in International
Computer Music Conference, 2012.

[2] Smith, J. O., Spectral Audio Signal Process-
ing, Stanford University, CCRMA, 2010, (online
book, last viewed 9/3/2011).

[3] Zolzer, U., DAFX-Digital Audio Effects, John Wi-
ley and Sons, 2011.

[4

[}

Gabrielli, L. and Squartini, S., “Ibrida: A New
DWT-Domain Sound Hybridization Tool,” in 45th
AES International Conference, Audio Engineer-
ing Society, 2012.

[5] Mallat, S., “Understanding deep convolutional
networks,” Phil. Trans. R. Soc. A, 374(2065), p.
20150203, 2016.

[6

—_

Lostanlen, V. and Cella, C.-E., “Deep convo-
lutional networks on the pitch spiral for mu-
sical instrument recognition,” arXiv preprint
arXiv:1605.06644, 2016.

[7] Cella, C. E., On symbolic representations of
music, Ph.D. thesis, Universita degli Studi di
Bologna, 2011.

[8] Gatys, L. A., Ecker, A. S., and Bethge, M., “Im-
age style transfer using convolutional neural net-
works,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp.

2414-2423, 2016.

[9] Foote, D., Yang, D., and Rohaninejad, M., “Do
Androids Dream of Electric Beats?” Available
online: https://audiostyletransfer.
wordpress.com/, 2016, accessed on 24 Octo-
ber 2017.

[10] Ulyanov, D. and Lebedev, V., “Audio texture
synthesis and style transfer,” Available on-
line: https://dmitryulyanov.github.
io/audio-texture—-synthesis—\
and-style-transfer/, 2016, accessed on
24 October 2017.

[11] Geng, S., Music Style Classification And Trans-
formation Using Convolutional Neural Network,
Ph.D. thesis, University of Miami, 2016.

AES 144" Convention, Milan, Italy, 2018 May 23 — 26
Page 8 of 10

Gabrielli, Cella, Vesperini, Droghini, Principi, Squartini Deep Learning for Timbre Modification

[12] Engel, J., Resnick, C., Roberts, A., Dieleman, S.,
Eck, D., Simonyan, K., and Norouzi, M., “Neural
Audio Synthesis of Musical Notes with WaveNet
Autoencoders,” arXiv, 2017.

[13] Goodfellow, 1., Bengio, Y., and Courville, A.,
“Autoencoders,” in Deep Learning, chapter 14,
pp- 502-525, MIT Press, 2016, http://www.
deeplearningbook.org.

[14] Principi, E., Vesperini, F., Squartini, S., and Pi-
azza, F., “Acoustic Novelty Detection with Adver-
sarial Autoencoders,” in Proc. of the International
Joint Conference on Neural Networks (IJCNN),
pp- 3324-3330, Anchorage, AK, USA, 2017. (a) Female voice FV1 (input).

Time [s]

[15] Hinton, G. E. and Salakhutdinov, R. R., “Reduc-
ing the dimensionality of data with neural net-
works,” Science, 313(5786), pp. 504507, 2006.

[16] Lu, X., Tsao, Y., Matsuda, S., and Hori, C.,
“Speech enhancement based on deep denoising

autoencoder.” in Proc. of Interspeech, pp. 436—
440, Lyon, France, 2013. (b) The proposed approach.

Time [s]

[17] Cella, C. E. and Burred, J. J., “Advanced Sound
Hybridizations by Means of the Theory of Sound-
Types,” in International Computer Music Confer-
ence, 2013.

[18] Burred, J. J., “A framework for music analy- Time [s]
sis/resynthesis based on matrix factorization,” in
International Computer Music Conference, 2014.

[19] Pons, J. and Serra, X., “Designing efficient ar-
chitectures for modeling temporal features with
convolutional neural networks,” in IEEE Inter-
national Conference on Acoustics, Speech, and
Signal Processing, 2017.

Time [s]

[20] Lee, J., Park, J., Kim, K. L., and Nam, J.,
“Sample-level Deep Convolutional Neural Net-
works for Music Auto-tagging Using Raw Wave- Fig. 3: Spectrograms from the input female voice FV1
forms,” arXiv preprint arXiv:1703.01789, 2017. (a), the proposed appr()ach and the c()mparative

methods(c-d). The hyperparameters for (b) are

reported in Table 1.

(d) Spectral flattening technique.

[21] Pons, J., Slizovskaia, O., Gong, R., Gémez, E.,
and Serra, X., “Timbre Analysis of Music Au-
dio Signals with Convolutional Neural Networks,”

25th European Signal Processing Conference,
EUSIPCO, 2017.

AES 144t Convention, Milan, Italy, 2018 May 23 — 26
Page 9 of 10

Gabrielli, Cella, Vesperini, Droghini, Principi, Squartini

Deep Learning for Timbre Modification

Time [s]

(b) The proposed approach.

Time [s]

(c) k-nn matching technique.

A

l
. 9 :
10 15 20 25 30 35 40
Time [s]

(d) Spectral flattening technique.

Fig. 4: Chromagrams from (a) FV1, (b) to (d) differ-
ent timbre transfer approaches using a distorted
guitar track as a target and FV1 as input. Ver-
tical axis shows the 12 notes (ticks correspond
to natural notes).

254

504

0 1000 2000 3000 4000 5000 6000 7000 8000
. M
504

0 1000 2000 3000 4000 5000 6000 7000 8000
25]

—50 4

0 1000 2000 3000 4000 5000 6000 7000 8000
251

—50 Mt p——t-
0 1000 2000 3000 4000 5000 6000 7000 8000
25]

501

0 1000 2000 3000 4000 5000 6000 7000 8000
254

—50 'M_J
=751 . . . — . !
0 1000 2000 3000 4000 5000 6000 7000 8000

25

~50

0 1000 2000 3000 4000 5000 6000 7000 8000

—25

—50 L?

0 1000 2000 3000 4000 5000 6000 7000 8000

o A

—50 4 1
T T T T T T T

0 1000 2000 3000 4000 5000 6000 7000 8000

254

> MW‘__L)

0 1000 2000 3000 4000 5000 6000 7000 8000

—25

50 1

0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency [Hz]

Fig. 5: Windowed DFTs taken from each instrument
class output with FV1 as input, at the position
where a pitched /i:/ phoneme takes places in
FV1. Each DFT shows similar pitch, although
timbres differ. Instrument classes, top to bot-
tom: brass, flute, guitar, keyboard, mallet, or-
gan, reed, string, synth-lead, vocal.

AES 144" Convention, Milan, Italy, 2018 May 23 — 26
Page 10 of 10

