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ABSTRACT

Sound-types are a new method to represent and manip-
ulate sounds in a quasi-symbolic way by means of low-
level features and subsequent analysis stages. After the
presentation of the basic ideas, a full analysis-synthesis
framework and some applications will be shown.

1. INTRODUCTION

A typical way to represent musical signals is a decompo-
sition of a time-sequence x[n] into a linear combination of
the form:

x[n] =
K

∑
k=1

αkgk[n]. (1)

The coefficients αk are derived from an analysis stage,
while the functions gk[n] can or cannot be determined by
the analysis stage and are used during a synthesis stage;
both stages are related to a particular signal model [6],
[5].

Equation 1 is the so-called signal-level representation;
this is rather general, computationally efficient, invertible1

and expresses some physical properties associated to the
signal. However, more expressive representaions, are also
possible.

Symbolic-level representations2 can be used to express
complex relationships and hierarchies by means of sym-
bols that encode musical information (structure analysis,
repeated patterns, etc.) but are usually inefficient, non-
invertible and are hardly related to the physical nature of
sound (figure 1) [12].

Mid-level representations, finally, try to address the
issue related to the lack of expressivity by focusing on
relatively simple concepts that are, however, more abstract
than the basis of the analysis used in equation 1. These
concepts are usually based on perceptual criteria related
to the low-level hearing and are situated in between the

1With invertibility we mean the possibility to go back to the signal
domain from the representation itself.

2Historically, symbolic-level representations designed highly formal-
ized descriptions of music, possibily based on a formal language and on
its underlying logic [1]. First attempts to apply formal logic to music
rely mainly on a deductive system called first-order logic. Later on, in-
spired by linguistic ideas, other extensions of logic have also been tested
(temporal, modal, non-monotonic, etc.) [8], [9].

Bernard Bel: Pattern grammars in formal representations of musical structures

—  124  —

If a binary-tree structure is assigned to constituents A1, A2, B1, B2 and C in the Bach

example, e.g.

S

A1 C B1 B2 A2

then S is the result of the following operation:

S = !1("(A1,C),-!3(B1,"(B2,A2)))

Obviously this description does not retain the entire topological information: the combination
of A1 and B1 might as well have been !4(A1,B1) or !2(A1,B1).

If more information must be made explicit, then alternative formulae, built on all the

supposingly ‘meaningful’ binary trees — in terms of musical analysis — may reduce

ambiguity:

S = !1("(A1,C),-!3(B1,"(B2,A2))) = -!4(#(!4(A1,B1),"(B2,A2)),C) = ... (up to 5! = 120

formulae).

Vecchione (1984:185ff) implicitly used time operators as predicates (i.e. Boolean operators)
in his syntactic model (‘$-syntax’), actually using the same notation for operators and their

corresponding predicates.  In this way, the first  expression of S may be written:

S —> !1(X,Y)
X —> "(A1,C)
Y —> -!3(B1,Z)
Z —> "(B2,A2)

Rules in this format may contain more than one predicate, thereby allowing hierarchical

descriptions more general than binary trees, e.g.

S

A1 B1 X C

B2 A2

resulting in a more compact (and less ambiguous) representation:

S —> !4(A1,B1)  -!1(A1,X)  "(A1,C)  -!3(B1,X)  -!4(B1,C)  -!4(X,C)
X —> "(B2,A2)
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Figure 1. An example of symbolic-level representation;
here the symbols represent musical entities hierarchically
organized.

constraints imposed on them by lower and higher levels
[4].

All the representation levels discussed so far have a
fixed degree of abstraction. In other words, they focus on
a particular point of view and are not scalable: once a rep-
resentation level has been selected it is not possible to go
smoothly to another level. All of them impose their own
concepts onto the signal: each representation models the
signal with it’s own concepts, even if they are completely
irrelevant to that particular signal; figure 2 roughly depicts
the described ideas.

Signal level Symbolic level

generality expressivity

physical
connection abstractness

Mid-levelMid-levelMid-levels

Figure 2. The levels of representation.

The main purpose of this article is to propose a con-
nection between the signal and the symbolic-level by defin-
ing a new representation method based on specific signal
processing techniques able to retrieve information from
a signal and model that information statistically to find
salient properties. After a theoretical formulation of the
proposed representation method, a real implementation
will be presented, showing how this method is a full new
framework for sound analysis and synthesis.
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2. SOUND-TYPES

With sound-types we define a new representation method
for musical signals that, while being generic enough to be
used for different signals, fulfills by-design the following
requirements:

• signal-dependent semantics: the basis of the rep-
resentation are inferred from the signal, using learn-
ing techniques; this creates the possibility to de-
scribe concepts that are really related to the sound
being analysed (adaptive dictionary);

• scalability: it is possible to change the degree of
abstraction in the representation, ranging from the
signal level to the symbolic- level in a continuous
manner; the degree of abstraction becomes a param-
eter of the representation;

• weak invertibility: the representation method is able
to generate the represented signal; this possibility
does not imply, however, that the generated signal
must be waveform-identical to the original one, but
only that perceptually relevant parts of it can be re-
constructed (that’s why we call it weak);

• generativity: it is possibile to generate sounds other
than the original one, according to some parameters
in the domain of the representation that can be esti-
mated from a given signal or deliberately created.

2.1. The typed model

The basic idea of sound-types is to represent sounds by
means of types and rules inferred by some low-level de-
scriptions of signals [10] and subsequent learning stages.
The types represent classes of equivalences for sounds,
while the rules represent transition probabilities that a
type is followed by another type.

Mathematically, we want to be able to translate a signal-
level representation into other forms involving different
elements and operators (mid to symbolic-level represen-
tations); more formally:

x[n] = ∑
K
k=1 αkgk[n]

= α1g1[n]+ . . .+αkgk[n]
= β1 f1[n]+ . . .+β j f j[n]

...
= ω1h1[n]+ . . .+ωtht [n].

In the equations above α,β , . . . ,ω could be any kind
of weighting coefficients, gk, f j, . . . ,ht are variables be-
longing to different types, + and · are relations defined for
each type and t < j < .. . < k (i.e. last equation has less

elements than first equation). Notice that + and · are not
algebraical sum and multiplication and are not required to
be commutative: they can be any kind of binary relation
defined over specific types. As long as it is possible to
convert, say, from type gk to type ht and to define rela-
tions on both we can perform the translation. Since the +
relation is not the algebraical sum, we will suppose that
our symbolic-level representation is a sequence of types
and that + is the successor function (i.e. g+ f means that
variable f of type F follows variable g of type G3; remem-
ber that if F and G are types then G→+ F is a type).

To validate the proposed translation we need some
functions that clearly define whether a given variable be-
longs to a given type and how it is possible to convert from
a type to another. A possible way to achieve these require-
ments is by means of clusters of low-level descriptors in
the feature space.

2.2. The analysis stage

In order to provide a verifiable model for the proposed
theory, a twofold process divided into the following stages
is needed:

• types inference: during this stage the types involved
in the representations are discovered;

• rules inference: a second stage is needed to dis-
cover the relations between the types.

This is an iterative process and must be repeated until
there are no more rules to discover; this will be cleared
later on.

!"#$%!

&'()!
*$+),)$-)

,#.)!
*$+),)$-)

&)/(",0.1
!)2/)$&0&*"$

&'()!
*$+),)$-)

,#.)!
*$+),)$-)

&'()!
*$+),)$-)

,#.)!
*$+),)$-)

!'/3".*-
,)(,)!)$&0&*"$14

!'/3".*-
,)(,)!)$&0&*"$15

!'/3".*-
,)(,)!)$&0&*"$1$

!*2$046.)7).
,)(,)!)$&0&*"$!

46&'()!8146,#.)! 56&'()!8156,#.)!
$6&'()!81$6,#.)!

96&'()!1:0&"/!;

Figure 3. An outline of the proposed algorithm for types
and rules inference

The following procedure shows a possible implemen-
tation of the twofold process, using low-level descriptors
plus statistical learning for types inference and Markov
models for rules inference; the first step of the algorithms
is represented by temporal segmentation:

1. atoms creation: subdivide a sound into small chunks
of approximately 40 ms called atoms or 0-types over-
lapping in time and frequency (labelled them with
integer numbers); these atoms can be produced ei-
ther by simply overlapped windows, by onsets sep-
arations or by other approaches such as atomic de-
composition;

3The successor relation is evidently non-commutative.



2. 1-types inference: compute a set of low-level de-
scriptors on each atom obtained in the previous step,
project the descriptors in a multi-dimensional space
and compute the clusters by means of statistical tech-
niques; each cluster will represent a 1-type (let’s la-
bel them g1, f1, . . .);

3. 1-rules inference: implement a Markov model to
describe the sequences of types present in the anal-
ysed sound (1-rules);

4. 1-level representation: represent the sound in a
symbolic language using the discovered 1-types and
1-rules and create sequences of types depending on
the rules;

5. n-types inference: compute a set of low-level de-
scriptors on the whole sequences found in previous
steps (for example g1 + f1); project again the de-
scriptors and compute again the clusters: each clus-
ter will represent a n-type (let’s label them gn, fn, . . .);

6. n-rules inference: implement a Markov model to
describe the sequences of types present in the anal-
ysed sound (n-rules);

7. n-level representation: represent the sound in a
symbolic language using the discovered n-types and
n-rules and create sequences of types depending on
the rules;

8. repeat n-rules and r-types: until valid rules are
found.

Algorithm 2 details the described procedure in pseudo-
code.

Algorithm 1 Sound-types analysis
Require: signal s

decompose s in atoms a[n]
repeat

for every atom in a[n] do
compute m-dimensional feature space fn,m

end for
compute optimal number of clusters k
compute clusters c[k] on fn,m
synthesize k types from c[k]
create a representation r of s using clusters c[k]
for every cluster in c[k] do

compute transition probabilities pk,k
end for
synthesize sequences of types with non-null proba-
bility
a[n]⇐ synthesized sequences of types
n⇐ k

until no more transitions

The number of iterations of the whole process are called
the abstraction levels of the representation. In terms of
atomic decomposition, all the sets of the discovered types

are time-frequency atoms with different time scales and
spectral content; the higher the level of a type the less it
is generic, the more expressive. Figure 3 illustrates the
proposed approach. Low-level descriptors and statistical
techniques are not used to classify different sounds, but
parts of a single sound; another approach could take into
account a real population of sounds and compute sound-
types over a whole database; since different atoms and
sequences (moleculae) belong to the same type as long as
they share common properties (defined by the set of de-
scriptors), they could theoretically be shared between dif-
ferent sounds. From an acoustical point of view, the infor-
mation amount increases dramatically from level to level,
ranging from the so-called acoustical quanta to segments
of sounds that could be even recognized as sections of a
musical composition. The representaion created on each
level can be done on a symbolic language of choice, even
with simple strings of labels.

2.3. The synthesis stage

The synthesis of the discovered types is a relatively easy
task and can be done either in time of frequency. In time,
it is basically a weighted sum of all the atoms belonging
to the same cluster, in which the distance of the cluster is
the weight. Algorithm 2 details the synthesis procedure in
pseudo-code.

Algorithm 2 Sound-types synthesis
Require: n-level representation r
Require: dictionary of n-types a[n]

for every symbol in r do
overlap-add corresponding type from a[n]

end for

Other methods are also possible instead of weighed
sum. For example, a witness of a type can be selected from
the cluster (either randomly or by its distance to the center
of the cluster). The overall quality of the reconstructed
signal strictly depends on the number of types used and
on the synthesis method selected.

3. CURRENT STATUS

Current implementation does not cover all the parts of
the analysis-synthesis algorithm for sound-types analysis.
A partial implementation can compute low-level features,
clusters in the feature space and transition probabilies up
to the first level. The analysis-synthesis framework is per-
fectly functional but the symbolic representation is only
possibile with 1-types and 1-rules thus proving the sound-
type theory only partially.

A typical types-inference stage (performed by cluster-
ing) is represented in figure 4: common sound-atoms are
grouped in the same cluster and relevant elements of the
clusters (such as centroid, spread, etc.) are computed.

A rules-inference stage (performed by a Markov chain),
is depicted in figure 5: the nodes are the sound-types,
while the connections are the transitions between them.
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Figure 4. A typical clustering stage.

With the two stages computed for the first level (1-
types, 1-rules), it is possible to represent a signal in a
pseudo-symbolic way through a string of labels. After
the analysis stage, a dictionary of the found types (basi-
cally sound grains created as described in section 2.3) and
and a simple string are produced: each label at position k
in the string represents the corresponding type (through a
numeric index that refers to the position in the dictionary).
In general, the algorithm creates a compact representation
of the given sound; the size of the representation is di-
rectly connected to the number of types discovered. If we
represent a sound with 33% of sound-types (i.e. a type
each three atoms) the compression ratio will be roughly
60%.

The complete list of implemented features in the cur-
rent version is the following:

• low-level features: spectral centroid, spectral spread,
spectral skewness, spectral kurtosis, spectral irreg-
ularity, specrtal slope, spectral decrease, high fre-
quency content, spectral flux, energy, zero-crossing
rate, fundamental frequency, inharmonicity;

• clustering algorithms: k-means, gaussian mixture
models (GMM);

• auto-estimation of number of clusters: it is pos-
sible to automatically estimate the optimal number
of clusters by means of two distinct techniques for
each clustering algorithm (gap-statistic for k-means
and BIC measure for GMM);

• dimensionality reduction: by means of principal
component analysis (PCA) it is possible to com-
pute as many features as wanted and then reduce
the analysis to a smaller number of dimensions;

• transition probabilities: Markov chain;

• resynthesis algorithm: the resynthesis algorithm
works both in frequency and in time domain with
types interpolation. In the reconstructed signal, where

a long sequence of the same type is found, it is pos-
sible to create linear interpolation with next appear-
ing type, improving sound quality;

• distance measures for resynthesis: euclidean, Man-
hattan distance (taxicab), Mahalanobis distance, co-
sine similarity;

• symbolic representations: strings of labels.
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Figure 5. Transitions probabilities for the first level.

3.1. Applications

Applications of the algorithm currently possible are:

• time and frequency transformations: it is possi-
ble to perform various transformations such as time-
stretch and pitch-shift; for the latter, formant preser-
vation by means of cepstral envelope has been also
implemented thus creating a sort of advanced phase-
vocoder4.

• audio compression: while not being the main pur-
pose of the approach, it is possible to compress a
sound by a given ratio. The quality of compres-
sion, anyway, is not comparable with dedicated al-
gorithms such as MP3.

• probabilistic generation: using the discovered prob-
abilities and types it is possible generated sounds
affine to the original ones, by means of a biased ran-
dom generator; we tested this approach on a small
jazz corpus (including several instruments) to imi-
tate the style of improvisations;

• symbolic description: analysing the created string
of labels, it is possible to acquire information of
salient properties of the sound and represent such
information in a meaningful way; figure 6, for ex-
ample, shows a comparison between a circular graph
created with collected types and probabilities (using

4To improve the sound quality of the phase-vocoder, the Laroche-
Dolson approach [7] has also been implemented.



the same approach as figure 5) and a typical struc-
ture representation from the software OpenMusic5.

Some samples processed by the proposed method can
be found online at http://www.soundtypes.com.

OpenMusicSound-types

Figure 6. A comparison between sound-types and Open-
Music graphs

4. A GENERALIZED FRAMEWORK

It’s important to point out that the proposed algorithm is
only a possible realization of the general idea (see [2]).
The low-level features to be used can be many more and
so can be the clustering techniques. Other concatenation
methods are also possible (see [3], [11]) and, finally, the
symbolic language for the sound representation is a matter
of choice. The more expressive the language, the more the
possible manipulations on the symbolic-level.

The whole problem of representing signals in sym-
bolic ways is built of three major parts: a back-end, a
concatenation layer and a front-end.

!"#$%&
&'('&

)&*!+',!
%$-

!'.*'$)'!

!/012&")
&'('&

13456789 :;<8=6789

!"#$%&
'(&#$)#*%"%#+

,%+'#-%+.

/+*("*
0112
34&"#5
#54&6(27
("&8

9"5%+.*
:4$;'4<6%=(
&46&>6>*

!<>89
4?>85@A
B3=<C@D

)E3@@7@A389A
F;<G3GHEH=H7@
B86=IF7@J
86;>E7@D

?112
@<$(4+*2
("&8

Figure 7. A global framework for the sound-type theory.

The main aim of the back-end is to provide chunks
of sounds (atoms) to be subsequently analysed; this can
be done simply by windowing or by using more complex
techniques such as atomic decomposition or onsets sep-
aration. Once atoms have been defined, it’s possible to
look for classes of equivalence for sound and concatena-
tion rules between classes in order to decompose a signal;
this should be done in the second layer. Once classes and
rules have been collected it’s then possibile to represent

5This is software is a well known tool developed at IRCAM to per-
form computer-aided composition; for more information see http:
//repmus.ircam.fr/openmusic/home.

them through a grammar of any symbolic language, either
descriptive only or generative6; this is, finally, the aim of
the front-end.

For each level there could be plenty of possibilities in
terms of algorithms and techniques; it’s therefore manda-
tory to define a sort of interface between levels, in order
to have a modular system into which plug different tools
on demand. Figure 7 depicts the described ideas.

In the context of this generalized framework, table 1
summarize the implemented features.

Table 1. Implemented techniques for each layer.

LAYER TECHINQUES
Back-end Windowing, onsets separation
Concatenation layer Low-level features + GMM

Low-level features + K-means
Markov chains

Front-end Descriptive language (strings)

Obviously, one of the main lacking features in the cur-
rent implementation is a powerful symbolic language. Rep-
resenting signals with a sequence of labels is not enough
to permit advanced manipulations in the symbolic-level.
In the next sections we will try to summarize the situation
and we will point out some possible improvements.

5. CONCLUSIONS AND PERSPECTIVES

The theory of sound-types needs expansions and improve-
ments both in symbolic-level and in the signal-processing
level. Sound-types seem to be promising entities to rep-
resent music because they are physically related to sound,
are invertible and are also capable to represent formal re-
lationships and hierarchies.

5.1. Open problems

Many problems are still open; one of the most important is
what we call the reduction effect: the more we clusterize
(meaning that we reduce the number of clusters, grouping
more entities in the same sound-type) the better will be the
representation but the worst will be the sound resynthesis.
Sound quality is directly linked to the number of clusters,
but if we augment this number we loose the possibility
of having many levels in the analysis. No easy solutions
have been found at the moment for this effect.

The theory of sound-types is a full analysis-synthesis
framework like, say, the phase-vocoder. Nevertheless, we
still lack a comprehensive mathematical formulation for
the described method that handles correctly types and rules.
We can define a sound type as a weighted sum of atoms:

t[n] =
K

∑
k=1

ωkak[n] (2)

6With the word grammar, here, we simply mean a corpus of syntactic
rules that define any formal system.

http://www.soundtypes.com
http://repmus.ircam.fr/openmusic/home
http://repmus.ircam.fr/openmusic/home


where ωk are the distances from the center of the ref-
erence cluster and ak[n] are the atoms belonging to the
reference cluster. We still don’t know, anyway, how to
deal with transition probabilites for higher levels: the the-
ory, at the moment, only looks for non-null probabilities
without giving relevance to more probable sequences of
sound-types.
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Figure 8. A plot of clusters dispersions as a quality mea-
sure of the method; the highest peaks signify bad clusters.

5.2. Evaluation

It is not easy fo find evaluation procedures for the pro-
posed method. The first technique the we adopted is acous-
tic inspection of reconstructed signals after full analysis
and synthesis. Afterward we introced a measure of clus-
tering quality by means of the gap statistic. Using that
measure we are able to evaluate bad clustering looking at
dispersions: in figure 8 the highest peaks signify bad clus-
ters. Anyway, this quality measure is hardly related to the
quality of the reconstructed signal and a good evaluation
procedure is still under investigation.

5.3. Future work

The next important steps in the research will be the fol-
lowing:

• typed language: the representation on the symbolic-
level is now a simple string while it should be done
in a appropriate language that can handle types; for
this reason an investigation in simply-typed languages
will be done and a more expressive language for
symbolic representation will be supported;

• higher levels: higher levels are still not implemented;
this could put into the game the transition proba-
bilites and lead to a complete mathematical formu-
lation of the theroy;

• symbolic-level transformations: it should be pos-
sible to transform a sound working on the string of

labels. For example, pitch-shift or time-stretch only
selected types or extract some given types to per-
form semantic source separation.

When some of these imporant steps will be complete,
it will be also possible to propose more appropriated eval-
uation techniques in order to understand the real power of
the p-roposed approach.
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