

QuBits, a System for Interactive Sonic Virtual Reality

Jonathan Kulpa Edmund Campion Carmine Cella
CNMAT - UC Berkeley

kulpajj@berkeley.edu
CNMAT - UC Berkeley

campion@berkeley.edu
CNMAT - UC Berkeley

carmine.cella@berkeley.edu

ABSTRACT
This article describes the QuBits system, a virtual reality
environment offering an expanded medium for musical
experience with space and visuals. The user and the
computer jointly shape many of the events. Sound en-
gines were designed to explore an aesthetic of algorith-
mically generated sonic structures, sound mass, interac-
tive evolution, and spatial sound. Real-time challenges
are discussed. A network of software is diagramed, solv-
ing initial issues with latency. Finally, the principles and
methods utilized in the current project are evaluated with
implications for future iterations.

We present QuBits, a virtual reality (VR) system sur-
rounding a user in a virtual sound space. The user partic-
ipates with headphones and the Vive VR System [1].
They encounter many kinds of VR characters (see Figure
1), beings with a presence in virtual space. These charac-
ters are detailed in Section 2.3. When each VR character
makes a sound, it also has a visual behavior, unifying
audio and image into a single event. Using hand control-
ler inputs and by movement through the space, the user
influences VR character audiovisual behavior and evolu-
tion. The user discovers what behaviors they can interact
with through explorative input. They can then shape
these behaviors further. Two vantages of the virtual
space are possible, the rightside-up (see Figure 1) and the
upside-down (see Figure 2). In the upside-down, visuals
are distorted and the sounds of the right-side up are pro-
cessed with a chain of effects (see Section 2.5).

The system is released under the GPLv3 license and can
be downloaded at:
https://github.com/kulpajj/QuBits_Max
https://github.com/kulpajj/QuBits_Unity

A demonstration of the system can be found at:
https://www.youtube.com/watch?v=2iZRtcW0X9k

Figure 1. Various VR characters in the rightside-up.

Figure 2. A vantage in the upside-down.

1. STATE OF THE ART
Before discussing our system, we review works from
other sound artists and composers exploring generative
sound. To discuss this type of music, we find it useful to
have a conceptual model, consisting of three main ele-
ments. These elements are 1) rules, lying in wait to be
activated or not, 2) input values (numbers) that seed the
rules, and 3) timings of the input values, causing output
and generating a sonic event. An example will clarify
this idea:

If an input force > 10, then make the timbre brighter, else
make the timbre darker.

The statement is the rule. Sending an input value, a
strength of force, at a particular moment in time produces
an output value, making the sound brighter or darker.
Successive input values shape sound over time.

Additionally, we propose the notion of the creator.
Any creator (human, computer, or nature) can be respon-
sible for any of the three elements of the conceptual mod-
el (rules, values, or timing).

In the following review, we examine works according
to who or what creates the timing of events.

Nature Creates Timing. Åsa Stjerna’s Sky Brought
Down [2] uses weather stations to measure data about
atmospheric pressure, precipitation, wind speed, and light
intensity. These values represent the rhythms and condi-
tions of nature, which Stjerna then maps to synthetic
sounds that can be short or sustained.
Computer Algorithms Create Timing. Robert Henke’s
laser and sound installations, such as Fragile Territories
[3], map a set of statistical algorithms simultaneously to
audio and visual; thus, both media evolve in tandem.

Copyright: © 2020 Jonathan Kulpa et al. This is an open-access article
distributed under the terms of the Creative Commons Attribu-
tion License 3.0 Unported, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original
author and source are credited.

These works can be infinite in duration due to constant
algorithmic variation.

Human User and Computer Jointly Create Timing.
Michael Musick’s Sonic Spaces Project [4] features
sculptures that each contain a microphone, microcontrol-
ler, and speaker. Users inject the system with energy by
making sound in any way they wish. Thereafter, algo-
rithmic analysis of the sound determines which pro-
cessing engines activate; algorithms also govern the en-
gines themselves. In Natasha Barrett’s OSSTS [5], a user
sits in a chair and uses a joystick controller to traverse a
virtual space projected on the floor (visuals move around
the stationary chair). Visuals correspond to one of 30
composed sound spaces, with many embedded sub-
spaces. Users navigate these sounds by their own accord,
able to leave a sonic scene and move to another. Paul
Weir produces interactive sounds for video games where
randomly selected phrases are layered together in unique
recombination [6]. Also, a user’s position affects an in-
terpolation value, morphing sound between a start and
end state.

2. OUR MODEL

2.1 Aesthetics

2.1.1 Generative Music

QuBits engages with generative music composition. In
this project, we created the rules, and there are three
modes of interaction between computer and user for the
creation of values and timing. 1) The computer entirely
determines the timing of an event and also the values
shaping the event. 2) The user triggers the beginnings of
an event, but thereafter values are selected by the com-
puter. 3) The user triggers the beginnings of an event, and
thereafter user and computer jointly shape values, a duet
of influence. When the user inputs to the system, they
influence the sound, and when they no longer input, the
computer completes the sound.

2.1.2 User-Interactive Evolution

Embedded in the environment are rules that remain
dormant until the user discovers how to activate them,
using their hand controllers and by moving through virtu-
al space. The new rules introduce new VR characters or
change the behavior of those already present, providing a
sense of evolution. Many of these discoverable rules are
independent, i.e. not part of a longer-term plan.

We also made a trajectory of four rule sets, or states,
that progress in a specific order, most likely over a longer
duration. We refer to this as the long-term evolution.
Along this trajectory, the user causes each change in
state. The trajectory progresses from maximum
noise/least pitch to maximum pitch/least noise. Also, VR
characters become ever more interconnected. When a
user encounters any change in the system, they do not
need to perceive whether it is independent or part of this
long-term plan. Both are strategies to create an environ-
ment that evolves over time.

2.1.3 Sound Masses and Particulate Sound

QuBits explores particulate sound in which many grains
of activity make up a larger sound mass. In this project,
masses of VR characters enable the exploration of masses
of sound. There are 121 individual qubit characters, each
contributing one particle of sampled real-world sound to
a greater mass. There are also 36 ceiling light characters,
each contributing energy to a synthesized sound mass.

2.1.4 Spatial Sound

In QuBits, there are two ways in which space, here virtual
space, is important for the user’s experience of sound. A
user’s hand controllers allow them to place input gestures
in virtual space, then affecting the sound of VR charac-
ters near those locations. Also, audio and visual effect
engines are activated and shaped by the user’s movement
through virtual space.

2.2 Sound Materials

The sounds in this project are a mixture of sampled real-
world sounds, phrases of granular synthesis (based on the
samples), and synthesis (generated without samples).

2.2.1 Sampling of Real-world Sounds

A large collection of objects was obtained to make an
extensive sample library. The objects include an assort-
ment of metal, laminated wood, bricks, and pins. The
pins were used to excite the resonances of the other ob-
jects, but also resonate themselves. The sound sources
were detailed with multiple microphones placed close in
proximity in a room with a low noise floor. Very short
samples were made as follows.

For each metal and wood object, each sample consists
of striking the object once with a pin, at a unique node
and with a variable amount of force, then letting the ob-
ject resonate (we refer to these samples as pin strikes). A
hyper-cardioid, omni, and large diaphragm microphone
were used; 15 to 80 samples were made per object.

For the bricks, contact microphones were applied to
capture vibrations traveling inside the material. For each
sample, one of the pins was dropped from above, first
bouncing onto the bricks followed by the sound of the pin
rolling around (we refer to these samples as pin rico-
chets); 100 samples were made.

Longer samples were also made with a collection of
baskets made of various dried grasses or metal wire.
Each basket was squeezed by hand to produce longer
samples of crackling sounds.

2.2.2 Phrases of Granular Synthesis

We wanted to explore the generation of longer musical
phrases by chaining together the short samples described
above. Granular synthesis driven by code is the tech-
nique employed. The granular synthesis engine used is
o.granubuf~ [7], which runs in Max/MSP [8].

Granular synthesis is usually implemented by splitting
a long sample into evenly-spaced windows of sound, or
grains, resulting in a variable amount of attack and decay
per grain. In our design, we wanted each grain to have a

predictable attack and decay. The short samples de-
scribed above were recorded with this goal in mind, each
having the desired sonic morphology. Each short sample
is a single grain.

We built granular engines driven by code to explore
various rhythms and effects. One engine creates acceler-
ating and decelerating rhythms. Another creates various
densities of sound mass. For this engine, the singular
grain is a pin ricochet sample, the mass then sounding
like pins endlessly dropping on bricks. A code engine
controls the duration between grains, producing a desired
mass density. We refer to these sounds as pin ricochet
masses. We will later describe how each of 121 qubits
quietly plays this sound, constructing a larger mass from
these smaller masses. Other engines were created for
granular time-stretching and granular freeze (where a
single temporal slice resonates for as long as desired).

2.2.3 Synthesis (Without Samples)

In this project, synthesis is used to recreate the sound of a
suspended metallic washer that has been struck with a pin
(causing it to spin and produce audible pulsations). We
had the desire to control timbre and rate of pulsation,
using a model. The synthesis engine used is resonators~
[9], running in Max/MSP. The washer resonance model
and the spin pulsation are produced by separate algo-
rithms.

In making each washer resonance model, we explore
degrees of harmonicity/inharmonicity. In [10], the author
proposes a generalized series to variate timbral quality.
A collection of frequencies is generated from three pa-
rameters:

 (1)

f is the fundamental frequency and n is the partial num-
ber. The three parameters are harmonicity a, defor-
mation b, and size g. a is our primary focus, explored
with values between .1 to 2. For variety, at run-time we
generate 50 models at a time, within random constraints,
many which could sound simultaneously. A score script
defines a progression of conditions. Each condition con-
sists of 1) harmonicity for fundamentals across all mod-
els and 2) harmonicity for partials within an individual
model. Another script, the model-making script, refer-
ences the score’s current value for parameter 1) to devel-
op a pool of fundamentals as a series of tones in its own
right. Then, 50 models are generated. For each model, f
is randomly selected from the fundamentals pool and
higher partials are produced using parameter 2). Individ-
ual ceiling light VR characters randomly select one of the
models to play.

To add the spinning pulsation effect, we use amplitude
modulation. By introducing an additional frequency near
a model’s fundamental, beatings occur as the waveforms
interfere. We first calculate the critical band distance
around the fundamental. At this distance, the beatings are
very fast, not perceptible as rhythmic, but this gives us a
reference. The critical band around fundamental f is ap-
proximated by the equivalent rectangular bandwidth
(ERB) [11]:

 (2)
Values between .5% to 8.5% of the ERB result in the
rhythmic speeds we desire. For deceleration, the extra
tone begins as a higher percentage and interpolates lower.

2.3 VR Characters

2.3.1 Anatomy of Each VR Character Instance

Each individual VR character is an instance of an abstrac-
tion, e.g. a particular qubit is an instance of the qubit ab-
straction. As a technical definition, each VR character is
an instance of a prefab in Unity [14] running an instance
of a C# Monobehavior class and communicating with a
dedicated instance of a poly~ audio engine in Max/MSP.
In Unity, a Monobehavior is the class that runs the Up-
date() method, executing code once per visual frame.
The Update() method enables each instance to live out
an independent life, animating rules and values over time,
affected by the wider system and user input. We next
describe three of the VR character abstractions.

2.3.2 Qubits

There are 121 qubits located on the virtual floor, initially
appearing as small purple spheres collectively arranged in
a grid. The computer and user affect individual qubits,
causing those instances to change behavior, or type. We
will illustrate some of the major qubit types.

As the experience begins, all qubits default to type 1.
These are completely stationary qubits, unaffected by
user or computer, appearing slightly translucent.

The computer triggers and shapes type 2 qubits. A
type 2 embarks upon a random walk, bounded by a small
area near its most recent position, for a random duration.
Each type 2 plays the sound of a pin ricochet mass, a den-
sity of pins dropping on bricks. This complex sound is
reduced to a sonic particle by playing very quietly. As a
community of qubits perform random walks, the larger
mass becomes a fluttery sound with its own distinct tim-
bre. This can be described more generally as an interest-
ing principle of composition: take a complex sound and
greatly reduce its amplitude; use this as the atom to build
a new quality of sound mass timbre. The system produc-
es various densities of type 2 activity. Each type 2’s
translucence becomes more solid, and thus the visual
representation of the mass corresponds to the collective
sonic density.

The user initiates type 3 behavior. With the use of their
hand controllers, they can click-drag on the virtual floor,
creating a force at those locations. Qubits close to the
force become type 3, repelling away. The sound is simi-
lar to type 2, a pin ricochet mass; however, the amplitude
is louder, revealing the composite pin ricochet particles.
The speed of repelling determines amplitude, and this is a
duet of influence. The user determines the strength of
force applied to a qubit through proximity of click, result-
ing in a speed of repelling and corresponding increase in
volume. When the user stops inputting, the computer
applies a force of friction to slow the qubit, lowering its
volume. This is the first independent interactive rule the

user discovers, through explorative input. They can then
shape this with intent. We will discuss type 4 and type 5
qubits after introducing the voids.

2.3.3 Voids

As the user repels qubits, they likely discover another
independent rule: if the negative space between a local
group of qubits is large enough, a void will open, bound-
ed by those qubits (see Figure 1). The void is reshaped as
the user repels the bounding qubits. An interrelationship
arises: qubit positions form and shape voids; the voids
also restrict where the bounding qubits can go.

The user creates the timing of a void’s sound, but the
sound itself is algorithmically determined. The user may
discover that by click-dragging on a void, it becomes
displaced a short distance from its centroid and when
letting go, it springs back. This is another independent
rule the user can discover and shape with intent. For as
long as the user displaces the void and while it springs
back, the engine plays crackling sounds, randomly select-
ed samples of the grass and wire baskets.

Additionally, a particle system, called a geyser, emits
from the center of a void at algorithmically determined
intervals, then traveling upwards (see Figure 1). Dis-
cussed shortly, this is the mechanism that activates the
ceiling light VR characters.

Figure 3. Two entangled qubits. Drawn arrows demon-
strate how each qubit mirrors the direction of the other.

2.3.4 Qubits Revisited

The user initiates type 4 qubits, the computer terminates
this behavior, and in between, user and computer jointly
shape the phrasing. As the user repels qubits, if two col-
lide, they become type 4, another independent rule. As a
type 4, instead of repelling from the user’s click, they
attract to it. The sound is bright noise, made from granu-
larly freezing a wood pin strike sample. Similar to type
3, the user’s click applies a force to increase speed and
volume and algorithmic friction decreases the volume.
Both qubits involved in the collision become an entan-
gled pair (see Figure 3). If the user moves one of them,
the other also sounds and moves in a mirrored direction.
The computer allows the pair to remain entangled for
only a short duration. An additional rule that may be
uncovered is that a type 4 is able to pass inside a void,
then becoming captured there. This establishes another
relationship between qubit and void.

Upon being captured in a void, the qubit becomes a
type 5, transforming into a new shape, a tentacle (see
Figure 4). By default, a type 5 is algorithmically driven,
a tentacle that elongates towards the ceiling and shrinks
back into the void (then repeating). This corresponds to

swells and fades in volume of darker noise, made from
freezing a play position at the end of a wood pin strike
sample.

When a user click-drags on a void containing tentacle
qubits, they begin a duet of influence over those tentacles.
The engine switches from playing dark noise to playing a
time stretched metal tube sound, low and resonant pitch-
es. When time stretching in the forward direction, these
sounds have a timbral morphology from brighter to dark-
er. Direction of time stretching is jointly determined be-
tween user and computer. While a user displaces the
void, its tentacles grow brighter (time stretching in re-
verse). If the user lets go of the void, the tentacles grow
darker (forward time stretching). When a void is dis-
placed containing multiple tentacles, harmonies arise
between the multiple low tones. Harmonic shifts are also
jointly determined. The user prolongs all active tones by
continually displacing a void. Tones change when the
user lets go and the tentacles shrink into the void. The
next time the void is displaced, the algorithm solely de-
termines which pitches change, ensuring there are com-
mon tones between harmonic shifts.

Though not detailed in this paper, additional qubit be-
haviors were designed and implemented: a qubit can
briefly split into two spheres and come back together into
one; also, a captured qubit can orbit inside its void.

2.3.5 Ceiling Lights

The 36 ceiling lights are activated by chance collisions,
resulting from computer algorithms. As previously stat-
ed, each void periodically emits a particle system geyser
that travels upward. When a ceiling light is struck by a
geyser, it grows in visual brightness and then fades away
again. This corresponds to swelling and fading of syn-
thesized sound, a randomly selected washer model com-
posed of mid to high frequencies. When multiple lights
are struck, they collectively create harmonies. Computer
and user jointly contribute to the frequency range of har-
monies, scene-wide. The algorithmically controlled ceil-
ing lights contribute higher frequencies and the user-
controlled tentacles contribute lower frequencies.

2.4 Long-term Evolution

Again, the long-term evolution is a composed trajectory
of four states. The total number of qubits captured in all
voids determines the evolution state. As a forward trajec-
tory, the user cannot skip states, capturing one qubit at a
time. A user can dissolve a void (freeing its captured
qubits), potentially returning to a state several steps back.

In the beginning state, all sounds are noisy. When a
user opens voids, geysers disappear before reaching the
ceiling. The user is not yet aware of the ceiling lights.

In the second state, there is an algorithmic counterpoint
of dark noise, multiple tentacles growing and shrinking.
This state introduces the geysers reaching the ceiling,
revealing ceiling lights and the first mid to high-pitched
harmonies. These tones intermingle with lower harmo-
nies when the user displaces a void containing tentacles.

In the third state, tentacles sometimes reach the ceiling,
colliding with and causing lights to spin (see Figure 4).
This introduces the synthesized spin pulsation. While

displacing a void containing tentacles, the user deter-
mines when the tentacles could reach the ceiling, and the
computer determines whether they travel high enough on
that displacement to spin the lights. In this state, there is
an interconnectedness among the major VR characters:
qubits create voids, voids capture qubits and turn them
into tentacles, and both geysers and tentacles play the
ceiling lights.

Figure 4. Tentacles eventually cause the lights to spin.

In the final state, geysers no longer cause ceiling lights
to glow. Each light runs on its own algorithmic timer,
creating a much more active collective. The score script
switches to a new progression of 18 conditions, begin-
ning as more harmonic and higher in frequency and grad-
ually becoming more inharmonic and lower. This pro-
gression then repeats.

2.5 Global Filtering and Effects

2.5.1 Directional Lighting

An algorithmically-controlled directional light either il-
luminates the entire scene or rotates away from it, creat-
ing various degrees of visual darkness. A fully-darkened
scene filters all sounds and a fully-lit scene leaves all
sounds unfiltered. The light’s rotation angle is mapped to
a crossfade, a continuum between filtered and unfiltered.

2.5.2 The Rightside-up and the Upside-down

Again, the user can hear and see QuBits through two dif-
ferent lenses, the rightside-up and the upside-down (see
Figures 1 and 2). The rightside-up is visually colorful,
sounding as previously described. The upside-down is
visually warped and in grayscale. In the upside-down, all
the sounds of the rightside-up are processed with a chain
of effects.

The user begins their experience in the rightside-up.
They are transported to the upside-down by passing
through a void. In the upside-down, a user’s movements
shape audio effects. While the user rotates around the
floor, transposition and downsampling are shaped. A
threshold distance to the floor’s center is a switch be-
tween two collections of values, sent to the effect en-
gines. The user can zoom in and out to contrast each set
of conditions. If a user comes close to a void, they are
pushed away and induce feedback from a delay line. The
user can repeatedly alternate between zooming in on a
void and allowing the algorithmic push, flirting with this
explosive feedback. If the user manages to pass through
a void, they return to the rightside-up.

2.6 Real-time Challenges

2.6.1 Computational Latency in the First Iteration

Initially, the visuals were created with Jitter and GenJit-
ter, Max/MSP’s 3D vector graphics engine. The algo-
rithms driving the system were driven by Max and Jitter
data objects, the GenExpr expression language, and the
odot expression language [12]. odot operates on Open
Sound Control (OSC) [13] data bundles and translates
them to Max/MSP’s native data types. After much de-
velopment, this version resulted in visual latency.

To troubleshoot, an attempt was made to consolidate
multiple GenExpr code boxes into one, however, this
proved to be extremely challenging, resulting in many
compile errors. We collaborated with multiple experts in
the field to troubleshoot these errors and consider alter-
nate designs for the system.1

2.6.2 Software and Hardware in the Rebuild

We made the decision to rebuild the visual and control
data system in Unity and C#. Max/MSP is retained as the
sound engine. The visuals and data processing in this
version perform much faster. Unity and Max/MSP com-
municate by sending OSC data bundles via the User
Datagram Protocol (UDP). OSC bundles cannot be un-
derstood by either Max/MSP or C#, so additional soft-
ware runs inside each platform, translating to native data
types. In Max/MSP, odot handles this task and in Unity,
OSC Simpl [15] translates to C# data types.

Figure 5. Data flow between software and hardware.

A canvas is then created, where visuals and algorithms in
Unity can trigger sounds and algorithms in Max/MSP,
and vice versa (see Figure 5). To centralize logic and by
preference, we drive the system with algorithms in C#.
An additional software component needed is SteamVR
[16] to map VR hardware input data in C# scripts.

2.6.3 Granular Sounds Recorded to Samples

Many of the granular rhythms and effects described pre-
viously require a lot of CPU due to a high number of
overlapping grains. Furthermore, our intentions were to
explore an entire mass composed of granular phrases,
here as dense as 121 simultaneous voices. Our CPU limit
did not permit this many granular engines. Thus, we rec-
orded these granular phrases, assembling them into a
large library.

1 Rob Ramirez, who previously worked on Max/MSP Jitter develop-
ment helped us with the compile errors. For alternate design strategies,
we consulted with Björn Hartmann, Professor of Electrical Engineering
and Computer Science at the University of California, Berkeley.

2.6.4 CPU-Intensive Audio Engine Replaced

To render the upside-down, we originally time stretched
the sound of the rightside-up, processing this in real-time.
Though this sound was very compelling, it was computa-
tionally demanding. As a compromise, we redesigned the
upside-down with an efficient chain of effects, still
providing an alternate lens on the rightside-up.

3. CONCLUSIONS
We think this project is an interesting exploration of gen-
erative composition, interactive evolution, sound mass,
and sound in virtual space; however, we also believe
these aesthetic goals can be better developed in future
iterations of QuBits.

We are compelled by the sound of the type 2 qubit
sound mass, smaller masses of pin ricochets summing to
a larger mass with its own distinct timbre. In a future
iteration, we will take this idea and scale it to more layers
of qubits, each layer having its own timbral identity that
weaves in and out of the scene. We also like the quality
of sound offered by sampled real-world sound and granu-
lar synthesis, however, in experimenting with ever-more
layers of activity, synthesis could offer greater control,
especially when needing to edit timbral identity.

Additionally, the experience of space in QuBits is not
as immersive as we desire. One issue in this iteration is
that distance to a sound source does not affect the volume
of that source. This can be addressed with a spatial audio
engine. Also, the user is constrained to a small area of
virtual space they cannot move beyond. Rather than
solve this issue of scope and immersion for VR, we
would rather QuBits be adapted to physical space. With
physical space, even given the same spatial scope, we
believe a more immersive experience would result. Some
of the virtual physics would need to be remapped.

The premise that the user influences the long-term evo-
lution is interesting to us, but the rule deserves reexami-
nation. Each state change in the current iteration is an
instantaneous switch the moment a qubit is captured in a
void. Instead, an accumulation of energy could be em-
ployed. For instance, a twice-repelled qubit could be-
come more frenetic in its type 2 random walk, growing
louder in volume. The mass would build towards a
threshold number of these louder qubits, eventually trig-
gering the next state. The rule that evolves the evolution
state could also change as the user’s experience progress-
es.

Figure 5 diagrams the hardware and software compris-
ing the system, solving initial latency issues.

We believe that this system will be helpful as a starting
point for composers and sound artists aiming to create
experiences with audiovisual systems.

4. REFERENCES
[1] Vive VR System. (2019). Vive. [Hardware].

[2] A.H. Stjerna, Sky Brought Down. Gothenburg,
Sweden: Sahlgrenska University Hospital, 2017.

[3] R. Henke, Fragile Territories. Lima, Peru: Espacio
Fundacion Telefonica, 2019.

[4] M. Musick. “A physically-distinct, multi-agent,
sonic space ecosystem,” in Proc. 2018 International
Computer Music Conference, Daegu, Korea, pp. 276
– 281.

[5] N. Barrett, OSSTS. Oslo, Norway: Oslo
Contemporary Music Festival, 2014.

[6] P. Weir. “Stealing sound: the use of generative
music in the next Thief”, presented at the 2011
Game Developers Conference, San Francisco, CA,
Feb. 28 – Mar. 4, USA, 2011.

[7] R. Gottfried. o.granubuf~. (2016). Regents of the
University of California. [Online]. Available:
https://github.com/CNMAT/CNMAT-odot

[8] Max 7. (2016). Cycling ’74. [Online]. Available:
https://cycling74.com/downloads

[9] A. Freed. resonators~. (1999). Regents of the
University of California. [Online]. Available:
https://github.com/CNMAT/CNMAT-Externs

[10] C.E. Cella, “Generalized series for spectral design,”
www.carminecella.com, 2013.

[11] B.C.J. Moore and B.R. Glasberg, “Suggested
formulae for calculating auditory-filter bandwidths
and excitation patterns,” J. Acoust. Soc. Am., vol. 74,
pp. 750-753, 1983.

[12] J. Maccallum, R. Gottfried, and I. Rostovtsev, J.
Bresson, and A. Freed. “Dynamic message-oriented
middleware with Open Sound Control and odot,” in
Proc. 2015 International Computer Music
Conference, Denton, TX, USA, pp. 58 – 64.

[13] M. Wright and A. Freed. “Open Sound Control: a
new protocol for communicating with sound
synthesizers,” in Proc. 1997 International Computer
Music Conference, Thessaloniki, Hellas, pp. 101–
104.

[14] Unity. (2018). Unity Technologies ApS. [Online].
Available: https://store.unity.com

[15] OSC Simpl. (2018). Sixth Sensor. [Online].
Available:
https://assetstore.unity.com/packages/tools/input-
management/osc-simpl-53710

[16] SteamVR. (2019). Valve Corporation. [Online].
Available:
https://store.steampowered.com/app/250820/SteamV
R

