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ABSTRACT 
This article describes the QuBits system, a virtual reality 
environment offering an expanded medium for musical 
experience with space and visuals.  The user and the 
computer jointly shape many of the events.  Sound en-
gines were designed to explore an aesthetic of algorith-
mically generated sonic structures, sound mass, interac-
tive evolution, and spatial sound.  Real-time challenges 
are discussed.  A network of software is diagramed, solv-
ing initial issues with latency.  Finally, the principles and 
methods utilized in the current project are evaluated with 
implications for future iterations. 
 
We present QuBits, a virtual reality (VR) system sur-
rounding a user in a virtual sound space.  The user partic-
ipates with headphones and the Vive VR System [1].  
They encounter many kinds of VR characters (see Figure 
1), beings with a presence in virtual space.  These charac-
ters are detailed in Section 2.3.  When each VR character 
makes a sound, it also has a visual behavior, unifying 
audio and image into a single event.  Using hand control-
ler inputs and by movement through the space, the user 
influences VR character audiovisual behavior and evolu-
tion.  The user discovers what behaviors they can interact 
with through explorative input.  They can then shape 
these behaviors further.  Two vantages of the virtual 
space are possible, the rightside-up (see Figure 1) and the 
upside-down (see Figure 2).  In the upside-down, visuals 
are distorted and the sounds of the right-side up are pro-
cessed with a chain of effects (see Section 2.5).    

The system is released under the GPLv3 license and can 
be downloaded at: 
https://github.com/kulpajj/QuBits_Max 
https://github.com/kulpajj/QuBits_Unity 

A demonstration of the system can be found at: 
https://www.youtube.com/watch?v=2iZRtcW0X9k 

 
Figure 1. Various VR characters in the rightside-up. 

 
Figure 2. A vantage in the upside-down. 

1. STATE OF THE ART 
Before discussing our system, we review works from 
other sound artists and composers exploring generative 
sound.  To discuss this type of music, we find it useful to 
have a conceptual model, consisting of three main ele-
ments.  These elements are 1) rules, lying in wait to be 
activated or not, 2) input values (numbers) that seed the 
rules, and 3) timings of the input values, causing output 
and generating a sonic event.  An example will clarify 
this idea:  

If an input force > 10, then make the timbre brighter, else 
make the timbre darker. 

The statement is the rule.  Sending an input value, a 
strength of force, at a particular moment in time produces 
an output value, making the sound brighter or darker.  
Successive input values shape sound over time. 

Additionally, we propose the notion of the creator.  
Any creator (human, computer, or nature) can be respon-
sible for any of the three elements of the conceptual mod-
el (rules, values, or timing).   

In the following review, we examine works according 
to who or what creates the timing of events. 

Nature Creates Timing. Åsa Stjerna’s Sky Brought 
Down [2] uses weather stations to measure data about 
atmospheric pressure, precipitation, wind speed, and light 
intensity.  These values represent the rhythms and condi-
tions of nature, which Stjerna then maps to synthetic 
sounds that can be short or sustained.     
Computer Algorithms Create Timing. Robert Henke’s 
laser and sound installations, such as Fragile Territories 
[3], map a set of statistical algorithms simultaneously to 
audio and visual; thus, both media evolve in tandem.  
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These works can be infinite in duration due to constant 
algorithmic variation. 

Human User and Computer Jointly Create Timing. 
Michael Musick’s Sonic Spaces Project [4] features 
sculptures that each contain a microphone, microcontrol-
ler, and speaker.  Users inject the system with energy by 
making sound in any way they wish.  Thereafter, algo-
rithmic analysis of the sound determines which pro-
cessing engines activate; algorithms also govern the en-
gines themselves.  In Natasha Barrett’s OSSTS [5], a user 
sits in a chair and uses a joystick controller to traverse a 
virtual space projected on the floor (visuals move around 
the stationary chair).  Visuals correspond to one of 30 
composed sound spaces, with many embedded sub-
spaces.  Users navigate these sounds by their own accord, 
able to leave a sonic scene and move to another.  Paul 
Weir produces interactive sounds for video games where 
randomly selected phrases are layered together in unique 
recombination [6].  Also, a user’s position affects an in-
terpolation value, morphing sound between a start and 
end state.   

2. OUR MODEL 

2.1 Aesthetics 

2.1.1 Generative Music 

QuBits engages with generative music composition.  In 
this project, we created the rules, and there are three 
modes of interaction between computer and user for the 
creation of values and timing. 1) The computer entirely 
determines the timing of an event and also the values 
shaping the event. 2) The user triggers the beginnings of 
an event, but thereafter values are selected by the com-
puter. 3) The user triggers the beginnings of an event, and 
thereafter user and computer jointly shape values, a duet 
of influence.  When the user inputs to the system, they 
influence the sound, and when they no longer input, the 
computer completes the sound.   

2.1.2 User-Interactive Evolution 

Embedded in the environment are rules that remain 
dormant until the user discovers how to activate them, 
using their hand controllers and by moving through virtu-
al space.  The new rules introduce new VR characters or 
change the behavior of those already present, providing a 
sense of evolution.  Many of these discoverable rules are 
independent, i.e. not part of a longer-term plan.   

We also made a trajectory of four rule sets, or states, 
that progress in a specific order, most likely over a longer 
duration.  We refer to this as the long-term evolution.  
Along this trajectory, the user causes each change in 
state.  The trajectory progresses from maximum 
noise/least pitch to maximum pitch/least noise.  Also, VR 
characters become ever more interconnected.  When a 
user encounters any change in the system, they do not 
need to perceive whether it is independent or part of this 
long-term plan.  Both are strategies to create an environ-
ment that evolves over time.     

2.1.3 Sound Masses and Particulate Sound 

QuBits explores particulate sound in which many grains 
of activity make up a larger sound mass.  In this project, 
masses of VR characters enable the exploration of masses 
of sound.  There are 121 individual qubit characters, each 
contributing one particle of sampled real-world sound to 
a greater mass.  There are also 36 ceiling light characters, 
each contributing energy to a synthesized sound mass.   

2.1.4 Spatial Sound 

In QuBits, there are two ways in which space, here virtual 
space, is important for the user’s experience of sound.  A 
user’s hand controllers allow them to place input gestures 
in virtual space, then affecting the sound of VR charac-
ters near those locations.  Also, audio and visual effect 
engines are activated and shaped by the user’s movement 
through virtual space. 

2.2 Sound Materials 

The sounds in this project are a mixture of sampled real-
world sounds, phrases of granular synthesis (based on the 
samples), and synthesis (generated without samples).  

2.2.1 Sampling of Real-world Sounds 

A large collection of objects was obtained to make an 
extensive sample library.  The objects include an assort-
ment of metal, laminated wood, bricks, and pins.  The 
pins were used to excite the resonances of the other ob-
jects, but also resonate themselves.  The sound sources 
were detailed with multiple microphones placed close in 
proximity in a room with a low noise floor.  Very short 
samples were made as follows.  

For each metal and wood object, each sample consists 
of striking the object once with a pin, at a unique node 
and with a variable amount of force, then letting the ob-
ject resonate (we refer to these samples as pin strikes).  A 
hyper-cardioid, omni, and large diaphragm microphone 
were used; 15 to 80 samples were made per object.     

For the bricks, contact microphones were applied to 
capture vibrations traveling inside the material.  For each 
sample, one of the pins was dropped from above, first 
bouncing onto the bricks followed by the sound of the pin 
rolling around (we refer to these samples as pin rico-
chets); 100 samples were made. 

Longer samples were also made with a collection of 
baskets made of various dried grasses or metal wire.  
Each basket was squeezed by hand to produce longer 
samples of crackling sounds.  

2.2.2 Phrases of Granular Synthesis 

We wanted to explore the generation of longer musical 
phrases by chaining together the short samples described 
above.  Granular synthesis driven by code is the tech-
nique employed.  The granular synthesis engine used is 
o.granubuf~ [7], which runs in Max/MSP [8].   

Granular synthesis is usually implemented by splitting 
a long sample into evenly-spaced windows of sound, or 
grains, resulting in a variable amount of attack and decay 
per grain.  In our design, we wanted each grain to have a 



 

 

predictable attack and decay.  The short samples de-
scribed above were recorded with this goal in mind, each 
having the desired sonic morphology.  Each short sample 
is a single grain. 

We built granular engines driven by code to explore 
various rhythms and effects.  One engine creates acceler-
ating and decelerating rhythms.  Another creates various 
densities of sound mass.  For this engine, the singular 
grain is a pin ricochet sample, the mass then sounding 
like pins endlessly dropping on bricks.  A code engine 
controls the duration between grains, producing a desired 
mass density.  We refer to these sounds as pin ricochet 
masses.  We will later describe how each of 121 qubits 
quietly plays this sound, constructing a larger mass from 
these smaller masses.  Other engines were created for 
granular time-stretching and granular freeze (where a 
single temporal slice resonates for as long as desired).  

2.2.3  Synthesis (Without Samples) 

In this project, synthesis is used to recreate the sound of a 
suspended metallic washer that has been struck with a pin 
(causing it to spin and produce audible pulsations).  We 
had the desire to control timbre and rate of pulsation, 
using a model.  The synthesis engine used is resonators~ 
[9], running in Max/MSP.  The washer resonance model 
and the spin pulsation are produced by separate algo-
rithms.  

In making each washer resonance model, we explore 
degrees of harmonicity/inharmonicity.  In [10], the author 
proposes a generalized series to variate timbral quality.  
A collection of frequencies is generated from three pa-
rameters:  

                                         (1) 

f is the fundamental frequency and n is the partial num-
ber.  The three parameters are harmonicity a, defor-
mation b, and size g.  a is our primary focus, explored 
with values between .1 to 2.  For variety, at run-time we 
generate 50 models at a time, within random constraints, 
many which could sound simultaneously.  A score script 
defines a progression of conditions.  Each condition con-
sists of 1) harmonicity for fundamentals across all mod-
els and 2) harmonicity for partials within an individual 
model.  Another script, the model-making script, refer-
ences the score’s current value for parameter 1) to devel-
op a pool of fundamentals as a series of tones in its own 
right.  Then, 50 models are generated.  For each model, f 
is randomly selected from the fundamentals pool and 
higher partials are produced using parameter 2).  Individ-
ual ceiling light VR characters randomly select one of the 
models to play.  

To add the spinning pulsation effect, we use amplitude 
modulation.  By introducing an additional frequency near 
a model’s fundamental, beatings occur as the waveforms 
interfere.  We first calculate the critical band distance 
around the fundamental.  At this distance, the beatings are 
very fast, not perceptible as rhythmic, but this gives us a 
reference.  The critical band around fundamental f is ap-
proximated by the equivalent rectangular bandwidth 
(ERB) [11]: 

                           (2)     
Values between .5% to 8.5% of the ERB result in the 
rhythmic speeds we desire.  For deceleration, the extra 
tone begins as a higher percentage and interpolates lower.   

2.3 VR Characters 

2.3.1 Anatomy of Each VR Character Instance 

Each individual VR character is an instance of an abstrac-
tion, e.g. a particular qubit is an instance of the qubit ab-
straction.  As a technical definition, each VR character is 
an instance of a prefab in Unity [14] running an instance 
of a C# Monobehavior class and communicating with a 
dedicated instance of a poly~ audio engine in Max/MSP.  
In Unity, a Monobehavior is the class that runs the Up-
date() method, executing code once per visual frame. 
The Update() method enables each instance to live out 
an independent life, animating rules and values over time, 
affected by the wider system and user input.  We next 
describe three of the VR character abstractions. 

2.3.2 Qubits 

There are 121 qubits located on the virtual floor, initially 
appearing as small purple spheres collectively arranged in 
a grid.  The computer and user affect individual qubits, 
causing those instances to change behavior, or type.  We 
will illustrate some of the major qubit types. 

As the experience begins, all qubits default to type 1.  
These are completely stationary qubits, unaffected by 
user or computer, appearing slightly translucent.           

The computer triggers and shapes type 2 qubits.  A 
type 2 embarks upon a random walk, bounded by a small 
area near its most recent position, for a random duration.  
Each type 2 plays the sound of a pin ricochet mass, a den-
sity of pins dropping on bricks.  This complex sound is 
reduced to a sonic particle by playing very quietly.  As a 
community of qubits perform random walks, the larger 
mass becomes a fluttery sound with its own distinct tim-
bre.  This can be described more generally as an interest-
ing principle of composition: take a complex sound and 
greatly reduce its amplitude; use this as the atom to build 
a new quality of sound mass timbre.  The system produc-
es various densities of type 2 activity.  Each type 2’s 
translucence becomes more solid, and thus the visual 
representation of the mass corresponds to the collective 
sonic density. 

The user initiates type 3 behavior.  With the use of their 
hand controllers, they can click-drag on the virtual floor, 
creating a force at those locations.  Qubits close to the 
force become type 3, repelling away.  The sound is simi-
lar to type 2, a pin ricochet mass; however, the amplitude 
is louder, revealing the composite pin ricochet particles.  
The speed of repelling determines amplitude, and this is a 
duet of influence.  The user determines the strength of 
force applied to a qubit through proximity of click, result-
ing in a speed of repelling and corresponding increase in 
volume.  When the user stops inputting, the computer 
applies a force of friction to slow the qubit, lowering its 
volume.  This is the first independent interactive rule the 



 

 

user discovers, through explorative input.  They can then 
shape this with intent.  We will discuss type 4 and type 5 
qubits after introducing the voids.  

2.3.3 Voids 

As the user repels qubits, they likely discover another 
independent rule: if the negative space between a local 
group of qubits is large enough, a void will open, bound-
ed by those qubits (see Figure 1).  The void is reshaped as 
the user repels the bounding qubits.  An interrelationship 
arises: qubit positions form and shape voids; the voids 
also restrict where the bounding qubits can go.   

The user creates the timing of a void’s sound, but the 
sound itself is algorithmically determined.  The user may 
discover that by click-dragging on a void, it becomes 
displaced a short distance from its centroid and when 
letting go, it springs back.  This is another independent 
rule the user can discover and shape with intent.  For as 
long as the user displaces the void and while it springs 
back, the engine plays crackling sounds, randomly select-
ed samples of the grass and wire baskets.    

Additionally, a particle system, called a geyser, emits 
from the center of a void at algorithmically determined 
intervals, then traveling upwards (see Figure 1).  Dis-
cussed shortly, this is the mechanism that activates the 
ceiling light VR characters. 

  
Figure 3. Two entangled qubits.  Drawn arrows demon-
strate how each qubit mirrors the direction of the other. 

2.3.4 Qubits Revisited 

The user initiates type 4 qubits, the computer terminates 
this behavior, and in between, user and computer jointly 
shape the phrasing.  As the user repels qubits, if two col-
lide, they become type 4, another independent rule.  As a 
type 4, instead of repelling from the user’s click, they 
attract to it.  The sound is bright noise, made from granu-
larly freezing a wood pin strike sample.  Similar to type 
3, the user’s click applies a force to increase speed and 
volume and algorithmic friction decreases the volume.  
Both qubits involved in the collision become an entan-
gled pair (see Figure 3).  If the user moves one of them, 
the other also sounds and moves in a mirrored direction.  
The computer allows the pair to remain entangled for 
only a short duration.  An additional rule that may be 
uncovered is that a type 4 is able to pass inside a void, 
then becoming captured there.  This establishes another 
relationship between qubit and void.  

Upon being captured in a void, the qubit becomes a 
type 5, transforming into a new shape, a tentacle (see 
Figure 4).  By default, a type 5 is algorithmically driven, 
a tentacle that elongates towards the ceiling and shrinks 
back into the void (then repeating).  This corresponds to 

swells and fades in volume of darker noise, made from 
freezing a play position at the end of a wood pin strike 
sample.   

When a user click-drags on a void containing tentacle 
qubits, they begin a duet of influence over those tentacles.  
The engine switches from playing dark noise to playing a 
time stretched metal tube sound, low and resonant pitch-
es.  When time stretching in the forward direction, these 
sounds have a timbral morphology from brighter to dark-
er.  Direction of time stretching is jointly determined be-
tween user and computer.  While a user displaces the 
void, its tentacles grow brighter (time stretching in re-
verse).  If the user lets go of the void, the tentacles grow 
darker (forward time stretching).  When a void is dis-
placed containing multiple tentacles, harmonies arise 
between the multiple low tones.  Harmonic shifts are also 
jointly determined.  The user prolongs all active tones by 
continually displacing a void.  Tones change when the 
user lets go and the tentacles shrink into the void.  The 
next time the void is displaced, the algorithm solely de-
termines which pitches change, ensuring there are com-
mon tones between harmonic shifts.   

Though not detailed in this paper, additional qubit be-
haviors were designed and implemented: a qubit can 
briefly split into two spheres and come back together into 
one; also, a captured qubit can orbit inside its void.  

2.3.5 Ceiling Lights 

The 36 ceiling lights are activated by chance collisions, 
resulting from computer algorithms.  As previously stat-
ed, each void periodically emits a particle system geyser 
that travels upward.  When a ceiling light is struck by a 
geyser, it grows in visual brightness and then fades away 
again.  This corresponds to swelling and fading of syn-
thesized sound, a randomly selected washer model com-
posed of mid to high frequencies.  When multiple lights 
are struck, they collectively create harmonies.  Computer 
and user jointly contribute to the frequency range of har-
monies, scene-wide.  The algorithmically controlled ceil-
ing lights contribute higher frequencies and the user-
controlled tentacles contribute lower frequencies.   

2.4 Long-term Evolution 

Again, the long-term evolution is a composed trajectory 
of four states.  The total number of qubits captured in all 
voids determines the evolution state.  As a forward trajec-
tory, the user cannot skip states, capturing one qubit at a 
time.  A user can dissolve a void (freeing its captured 
qubits), potentially returning to a state several steps back.   

In the beginning state, all sounds are noisy.  When a 
user opens voids, geysers disappear before reaching the 
ceiling.  The user is not yet aware of the ceiling lights.  

In the second state, there is an algorithmic counterpoint 
of dark noise, multiple tentacles growing and shrinking.  
This state introduces the geysers reaching the ceiling, 
revealing ceiling lights and the first mid to high-pitched 
harmonies.  These tones intermingle with lower harmo-
nies when the user displaces a void containing tentacles.     

In the third state, tentacles sometimes reach the ceiling, 
colliding with and causing lights to spin (see Figure 4).  
This introduces the synthesized spin pulsation.  While 



 

 

displacing a void containing tentacles, the user deter-
mines when the tentacles could reach the ceiling, and the 
computer determines whether they travel high enough on 
that displacement to spin the lights.  In this state, there is 
an interconnectedness among the major VR characters: 
qubits create voids, voids capture qubits and turn them 
into tentacles, and both geysers and tentacles play the 
ceiling lights. 

   
Figure 4. Tentacles eventually cause the lights to spin. 

In the final state, geysers no longer cause ceiling lights 
to glow.  Each light runs on its own algorithmic timer, 
creating a much more active collective.  The score script 
switches to a new progression of 18 conditions, begin-
ning as more harmonic and higher in frequency and grad-
ually becoming more inharmonic and lower.  This pro-
gression then repeats. 

2.5 Global Filtering and Effects 

2.5.1 Directional Lighting 

An algorithmically-controlled directional light either il-
luminates the entire scene or rotates away from it, creat-
ing various degrees of visual darkness.  A fully-darkened 
scene filters all sounds and a fully-lit scene leaves all 
sounds unfiltered.  The light’s rotation angle is mapped to 
a crossfade, a continuum between filtered and unfiltered. 

2.5.2 The Rightside-up and the Upside-down 

Again, the user can hear and see QuBits through two dif-
ferent lenses, the rightside-up and the upside-down (see 
Figures 1 and 2).  The rightside-up is visually colorful, 
sounding as previously described.  The upside-down is 
visually warped and in grayscale.  In the upside-down, all 
the sounds of the rightside-up are processed with a chain 
of effects.   

The user begins their experience in the rightside-up. 
They are transported to the upside-down by passing 
through a void.  In the upside-down, a user’s movements 
shape audio effects.  While the user rotates around the 
floor, transposition and downsampling are shaped.  A 
threshold distance to the floor’s center is a switch be-
tween two collections of values, sent to the effect en-
gines.  The user can zoom in and out to contrast each set 
of conditions.  If a user comes close to a void, they are 
pushed away and induce feedback from a delay line.  The 
user can repeatedly alternate between zooming in on a 
void and allowing the algorithmic push, flirting with this 
explosive feedback.  If the user manages to pass through 
a void, they return to the rightside-up. 

2.6 Real-time Challenges 

2.6.1 Computational Latency in the First Iteration 

Initially, the visuals were created with Jitter and GenJit-
ter, Max/MSP’s 3D vector graphics engine.  The algo-
rithms driving the system were driven by Max and Jitter 
data objects, the GenExpr expression language, and the 
odot expression language [12].  odot operates on Open 
Sound Control (OSC) [13] data bundles and translates 
them to Max/MSP’s native data types.  After much de-
velopment, this version resulted in visual latency. 

To troubleshoot, an attempt was made to consolidate 
multiple GenExpr code boxes into one, however, this 
proved to be extremely challenging, resulting in many 
compile errors.  We collaborated with multiple experts in 
the field to troubleshoot these errors and consider alter-
nate designs for the system.1 

2.6.2 Software and Hardware in the Rebuild 

We made the decision to rebuild the visual and control 
data system in Unity and C#.  Max/MSP is retained as the 
sound engine.  The visuals and data processing in this 
version perform much faster.  Unity and Max/MSP com-
municate by sending OSC data bundles via the User 
Datagram Protocol (UDP).  OSC bundles cannot be un-
derstood by either Max/MSP or C#, so additional soft-
ware runs inside each platform, translating to native data 
types.  In Max/MSP, odot handles this task and in Unity, 
OSC Simpl [15] translates to C# data types.   

 
Figure 5. Data flow between software and hardware. 

A canvas is then created, where visuals and algorithms in 
Unity can trigger sounds and algorithms in Max/MSP, 
and vice versa (see Figure 5).  To centralize logic and by 
preference, we drive the system with algorithms in C#.  
An additional software component needed is SteamVR 
[16] to map VR hardware input data in C# scripts. 

2.6.3 Granular Sounds Recorded to Samples   

Many of the granular rhythms and effects described pre-
viously require a lot of CPU due to a high number of 
overlapping grains.  Furthermore, our intentions were to 
explore an entire mass composed of granular phrases, 
here as dense as 121 simultaneous voices.  Our CPU limit 
did not permit this many granular engines.  Thus, we rec-
orded these granular phrases, assembling them into a 
large library. 

 
1 Rob Ramirez, who previously worked on Max/MSP Jitter develop-
ment helped us with the compile errors.  For alternate design strategies, 
we consulted with Björn Hartmann, Professor of Electrical Engineering 
and Computer Science at the University of California, Berkeley. 



 

 

2.6.4 CPU-Intensive Audio Engine Replaced 

To render the upside-down, we originally time stretched 
the sound of the rightside-up, processing this in real-time.  
Though this sound was very compelling, it was computa-
tionally demanding.  As a compromise, we redesigned the 
upside-down with an efficient chain of effects, still 
providing an alternate lens on the rightside-up. 

3. CONCLUSIONS 
We think this project is an interesting exploration of gen-
erative composition, interactive evolution, sound mass, 
and sound in virtual space; however, we also believe 
these aesthetic goals can be better developed in future 
iterations of QuBits.  

We are compelled by the sound of the type 2 qubit 
sound mass, smaller masses of pin ricochets summing to 
a larger mass with its own distinct timbre.  In a future 
iteration, we will take this idea and scale it to more layers 
of qubits, each layer having its own timbral identity that 
weaves in and out of the scene.  We also like the quality 
of sound offered by sampled real-world sound and granu-
lar synthesis, however, in experimenting with ever-more 
layers of activity, synthesis could offer greater control, 
especially when needing to edit timbral identity.   

Additionally, the experience of space in QuBits is not 
as immersive as we desire.  One issue in this iteration is 
that distance to a sound source does not affect the volume 
of that source.  This can be addressed with a spatial audio 
engine.  Also, the user is constrained to a small area of 
virtual space they cannot move beyond.  Rather than 
solve this issue of scope and immersion for VR, we 
would rather QuBits be adapted to physical space.  With 
physical space, even given the same spatial scope, we 
believe a more immersive experience would result.  Some 
of the virtual physics would need to be remapped.     

The premise that the user influences the long-term evo-
lution is interesting to us, but the rule deserves reexami-
nation.  Each state change in the current iteration is an 
instantaneous switch the moment a qubit is captured in a 
void.  Instead, an accumulation of energy could be em-
ployed.  For instance, a twice-repelled qubit could be-
come more frenetic in its type 2 random walk, growing 
louder in volume.  The mass would build towards a 
threshold number of these louder qubits, eventually trig-
gering the next state.  The rule that evolves the evolution 
state could also change as the user’s experience progress-
es.   

Figure 5 diagrams the hardware and software compris-
ing the system, solving initial latency issues.   

We believe that this system will be helpful as a starting 
point for composers and sound artists aiming to create 
experiences with audiovisual systems.        
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